Relationships between brain structure-function coupling in normal aging and cognition: A cross-ethnicity population-based study

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-09-13 DOI:10.1016/j.neuroimage.2024.120847
{"title":"Relationships between brain structure-function coupling in normal aging and cognition: A cross-ethnicity population-based study","authors":"","doi":"10.1016/j.neuroimage.2024.120847","DOIUrl":null,"url":null,"abstract":"<div><p>Increased efforts in neuroscience seek to understand how macro-anatomical and physiological connectomes cooperatively work to generate cognitive behaviors. However, the structure-function coupling characteristics in normal aging individuals remain unclear. Here, we developed an index, the Coupling in Brain Structural connectome and Functional connectome (C-BSF) index, to quantify regional structure-function coupling in a large community-based cohort. C-BSF used diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI) data from the Polyvascular Evaluation for Cognitive Impairment and Vascular Events study (PRECISE) cohort (2007 individuals, age: 61.15 ± 6.49 years) and the Sydney Memory and Ageing Study (MAS) cohort (254 individuals, age: 83.45 ± 4.33 years). We observed that structure-function coupling was the strongest in the visual network and the weakest in the ventral attention network. We also observed that the weaker structure-function coupling was associated with increased age and worse cognitive level of the participant. Meanwhile, the structure-function coupling in the visual network was associated with the visuospatial performance and partially mediated the connections between age and the visuospatial function. This work contributes to our understanding of the underlying brain mechanisms by which aging affects cognition and also help establish early diagnosis and treatment approaches for neurological diseases in the elderly.</p></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053811924003446/pdfft?md5=ac1274e6e9ba0a02e77a1e202e0200a5&pid=1-s2.0-S1053811924003446-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003446","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Increased efforts in neuroscience seek to understand how macro-anatomical and physiological connectomes cooperatively work to generate cognitive behaviors. However, the structure-function coupling characteristics in normal aging individuals remain unclear. Here, we developed an index, the Coupling in Brain Structural connectome and Functional connectome (C-BSF) index, to quantify regional structure-function coupling in a large community-based cohort. C-BSF used diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI) data from the Polyvascular Evaluation for Cognitive Impairment and Vascular Events study (PRECISE) cohort (2007 individuals, age: 61.15 ± 6.49 years) and the Sydney Memory and Ageing Study (MAS) cohort (254 individuals, age: 83.45 ± 4.33 years). We observed that structure-function coupling was the strongest in the visual network and the weakest in the ventral attention network. We also observed that the weaker structure-function coupling was associated with increased age and worse cognitive level of the participant. Meanwhile, the structure-function coupling in the visual network was associated with the visuospatial performance and partially mediated the connections between age and the visuospatial function. This work contributes to our understanding of the underlying brain mechanisms by which aging affects cognition and also help establish early diagnosis and treatment approaches for neurological diseases in the elderly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正常衰老过程中大脑结构-功能耦合与认知之间的关系:基于人群的跨种族研究
神经科学领域越来越多的研究试图了解宏观解剖学和生理学连接体如何协同工作以产生认知行为。然而,正常衰老个体的结构-功能耦合特征仍不清楚。在此,我们开发了一种指数,即大脑结构连接组和功能连接组耦合指数(C-BSF),用于量化基于社区的大型队列中的区域结构-功能耦合。C-BSF使用了扩散张量成像(DTI)和静息态功能磁共振成像(fMRI)数据,这些数据来自认知障碍和血管事件多血管评估研究(PRECISE)队列(2007人,年龄:61.15 ± 6.49岁)和悉尼记忆与老龄化研究(MAS)队列(254人,年龄:83.45 ± 4.33岁)。我们观察到,结构-功能耦合在视觉网络中最强,而在腹侧注意网络中最弱。我们还观察到,结构-功能耦合较弱与受试者年龄增加和认知水平降低有关。同时,视觉网络中的结构-功能耦合与视觉空间表现相关,并部分介导了年龄与视觉空间功能之间的联系。这项研究有助于我们了解衰老影响认知的潜在脑机制,也有助于建立老年人神经系统疾病的早期诊断和治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Characterizing the role of the microbiota-gut-brain axis in cerebral small vessel disease: an integrative multi‑omics study. Sleep-spindles as a marker of attention and intelligence in dogs. Cerebral blood flow and arterial transit time responses to exercise training in older adults. Decoding Cortical Chronotopy - Comparing the Influence of Different Cortical Organizational Schemes. Neurophysiological dynamics of metacontrol states: EEG insights into conflict regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1