Ayaka Mikami, Hai Huang, Aiko Hyodo, Kengo Horie, Keiko Yasumatsu, Yuzo Ninomiya, Yoshihiro Mitoh, Seiji Iida, Ryusuke Yoshida
{"title":"The role of GABA in modulation of taste signaling within the taste bud.","authors":"Ayaka Mikami, Hai Huang, Aiko Hyodo, Kengo Horie, Keiko Yasumatsu, Yuzo Ninomiya, Yoshihiro Mitoh, Seiji Iida, Ryusuke Yoshida","doi":"10.1007/s00424-024-03007-x","DOIUrl":null,"url":null,"abstract":"<p><p>Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet-sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell-cell interactions seen with application of sour-sweet mixtures.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03007-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet-sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell-cell interactions seen with application of sour-sweet mixtures.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.