{"title":"Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium.","authors":"Steven J Kleene","doi":"10.1007/s00424-024-03050-8","DOIUrl":null,"url":null,"abstract":"<p><p>Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in the cilium have only been characterized in standard normosmolar external solutions, but the osmolality of the renal filtrate bathing the cilia varies widely. Here I report that urine, which better represents the filtrate, activates a large cation-conducting current in the cilia. With defined external solutions, hyperosmolality through addition of urea, NaCl, or D-mannitol activates a similar current. Most but not all of this current is conducted through TRPM4 channels. It is greatly reduced by internal MgATP or 9-phenanthrol, which inhibit TRPM4, or by shRNA knockdown of TRPM4. However, part of the current activated by urea conducts Ca<sup>2+</sup> through channels that remain to be identified. External hyperosmolality also greatly increases the activity of ciliary PC2 channels; this is the first physiological stimulus identified for these channels. Possibilities are discussed for the mechanisms of channel activation and the roles for these activities in regulatory volume increase and cystogenesis.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"479-494"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03050-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in the cilium have only been characterized in standard normosmolar external solutions, but the osmolality of the renal filtrate bathing the cilia varies widely. Here I report that urine, which better represents the filtrate, activates a large cation-conducting current in the cilia. With defined external solutions, hyperosmolality through addition of urea, NaCl, or D-mannitol activates a similar current. Most but not all of this current is conducted through TRPM4 channels. It is greatly reduced by internal MgATP or 9-phenanthrol, which inhibit TRPM4, or by shRNA knockdown of TRPM4. However, part of the current activated by urea conducts Ca2+ through channels that remain to be identified. External hyperosmolality also greatly increases the activity of ciliary PC2 channels; this is the first physiological stimulus identified for these channels. Possibilities are discussed for the mechanisms of channel activation and the roles for these activities in regulatory volume increase and cystogenesis.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.