Gokhan Gundogdu, Jay Budrewicz, Jodie Giordano, Raffaele Melidone, Chris Searcy, Vikas Agarwal, Carlos R Estrada, Joshua R Mauney
{"title":"Evaluation of bi-layer silk fibroin grafts for onlay urethroplasty in a rabbit model of urethral stricture disease.","authors":"Gokhan Gundogdu, Jay Budrewicz, Jodie Giordano, Raffaele Melidone, Chris Searcy, Vikas Agarwal, Carlos R Estrada, Joshua R Mauney","doi":"10.1080/17460751.2024.2389753","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Autologous tissues such as buccal mucosa (BM) are widely used for reconstruction of urethral strictures; however, limitations such as donor site morbidity and scarce tissue supply require the development of alternative biomaterials for urethral repair. The goals of this study were to determine the safety and efficacy of bi-layer silk fibroin (BLSF) matrices for urethral stricture repair and compare histological and functional outcomes to the standard approach, BM urethroplasty under good laboratory practices.<b>Material and methods:</b> A total of 13 rabbits exhibiting urethral stricture formation following electrocoagulation injury were treated with onlay urethroplasty with either acellular BLSF (N = 7) or autologous BM (N = 6) grafts for 3 months. Uninjured control rabbits were maintained in parallel (N = 4).<b>Results and conclusion:</b> Animals receiving BLSF implants were demonstrated to be functionally equivalent to BM grafts in their ability to restored strictured calibers, support micturition and promote tissue regeneration with minimal inflammation.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2024.2389753","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autologous tissues such as buccal mucosa (BM) are widely used for reconstruction of urethral strictures; however, limitations such as donor site morbidity and scarce tissue supply require the development of alternative biomaterials for urethral repair. The goals of this study were to determine the safety and efficacy of bi-layer silk fibroin (BLSF) matrices for urethral stricture repair and compare histological and functional outcomes to the standard approach, BM urethroplasty under good laboratory practices.Material and methods: A total of 13 rabbits exhibiting urethral stricture formation following electrocoagulation injury were treated with onlay urethroplasty with either acellular BLSF (N = 7) or autologous BM (N = 6) grafts for 3 months. Uninjured control rabbits were maintained in parallel (N = 4).Results and conclusion: Animals receiving BLSF implants were demonstrated to be functionally equivalent to BM grafts in their ability to restored strictured calibers, support micturition and promote tissue regeneration with minimal inflammation.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.