Chen Wang, Zhangfei Shen, Xiao-Yuan Yang, Tian-Min Fu
{"title":"Structures and functions of short argonautes.","authors":"Chen Wang, Zhangfei Shen, Xiao-Yuan Yang, Tian-Min Fu","doi":"10.1080/15476286.2024.2380948","DOIUrl":null,"url":null,"abstract":"<p><p>Argonaute proteins (Agos) represent a highly conserved family of proteins prevalent in all domains of life and have been implicated in various biological processes. Based on the domain architecture, Agos can be divided into long Agos and short Agos. While long Agos have been extensively studied over the past two decades, short Agos, found exclusively in prokaryotes, have recently gained attention for their roles in prokaryotic immune defence against mobile genetic elements, such as plasmids and phages. Notable functional and structural studies provide invaluable insights into the underlying molecular mechanisms of representative short Ago systems. Despite the diverse domain arrangements, short Agos generally form heterodimeric complexes with their associated effector proteins, activating the effector's enzymatic activities upon target detection. The activation of effector proteins in the short Ago systems leads to bacterial cell death, a mechanism of sacrificing individuals to protect the community.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-7"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370952/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2380948","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Argonaute proteins (Agos) represent a highly conserved family of proteins prevalent in all domains of life and have been implicated in various biological processes. Based on the domain architecture, Agos can be divided into long Agos and short Agos. While long Agos have been extensively studied over the past two decades, short Agos, found exclusively in prokaryotes, have recently gained attention for their roles in prokaryotic immune defence against mobile genetic elements, such as plasmids and phages. Notable functional and structural studies provide invaluable insights into the underlying molecular mechanisms of representative short Ago systems. Despite the diverse domain arrangements, short Agos generally form heterodimeric complexes with their associated effector proteins, activating the effector's enzymatic activities upon target detection. The activation of effector proteins in the short Ago systems leads to bacterial cell death, a mechanism of sacrificing individuals to protect the community.
Argonaute 蛋白(Agos)是一个高度保守的蛋白质家族,普遍存在于生命的各个领域,并与各种生物过程有关。根据结构域的结构,Agos 可分为长 Agos 和短 Agos。在过去的二十年中,人们对长 Agos 进行了广泛的研究,而短 Agos 则只存在于原核生物中,最近因其在原核生物抵御质粒和噬菌体等移动遗传因子的免疫防御中的作用而备受关注。著名的功能和结构研究为了解代表性短 Ago 系统的基本分子机制提供了宝贵的视角。尽管结构域排列各不相同,但短 Ago 通常与其相关的效应蛋白形成异源二聚体复合物,在检测到目标后激活效应蛋白的酶活性。短 Ago 系统中效应蛋白的激活会导致细菌细胞死亡,这是一种牺牲个体保护群体的机制。
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy