The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system.

IF 7.9 2区 医学 Q1 IMMUNOLOGY Seminars in Immunopathology Pub Date : 2024-08-30 DOI:10.1007/s00281-024-01023-8
Naomi Hofsink, Lucianne Groenink, Torsten Plösch
{"title":"The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system.","authors":"Naomi Hofsink, Lucianne Groenink, Torsten Plösch","doi":"10.1007/s00281-024-01023-8","DOIUrl":null,"url":null,"abstract":"<p><p>The first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders. Moreover, lasting effects of maternal immune activation on the offspring's immune system have been reported. Taken together, this indicates that the effect of maternal immune activation is not limited to the central nervous system. Here, we explore the impact of maternal immune activation on the immune system of the offspring. We first describe the development of the immune system and provide an overview of reported alterations in the cytokine profiles, immune cell profiles, immune cell function, and immune induction in pre-clinical models. Additionally, we highlight recent research on the impact of maternal COVID-19 exposure on the neonatal immune system and the potential health consequences for the child. Our review shows that maternal immune activation alters the offspring's immune system under certain conditions, but the reported effects are conflicting and inconsistent. In general, epigenetic modifications are considered the mechanism for fetal programming. The available data was insufficient to identify specific pathways that may contribute to immune programming. As a consequence of the COVID-19 pandemic, more research now focuses on the possible health effects of maternal immune activation on the offspring. Future research addressing the offspring's immune response to maternal immune activation can elucidate specific pathways that contribute to fetal immune programming and the long-term health effects for the offspring.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Immunopathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00281-024-01023-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders. Moreover, lasting effects of maternal immune activation on the offspring's immune system have been reported. Taken together, this indicates that the effect of maternal immune activation is not limited to the central nervous system. Here, we explore the impact of maternal immune activation on the immune system of the offspring. We first describe the development of the immune system and provide an overview of reported alterations in the cytokine profiles, immune cell profiles, immune cell function, and immune induction in pre-clinical models. Additionally, we highlight recent research on the impact of maternal COVID-19 exposure on the neonatal immune system and the potential health consequences for the child. Our review shows that maternal immune activation alters the offspring's immune system under certain conditions, but the reported effects are conflicting and inconsistent. In general, epigenetic modifications are considered the mechanism for fetal programming. The available data was insufficient to identify specific pathways that may contribute to immune programming. As a consequence of the COVID-19 pandemic, more research now focuses on the possible health effects of maternal immune activation on the offspring. Future research addressing the offspring's immune response to maternal immune activation can elucidate specific pathways that contribute to fetal immune programming and the long-term health effects for the offspring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
母体免疫激活(MIA)对后代免疫系统的胎儿编程效应。
生命最初的 1000 天是发育的关键时期,在此期间,不利的环境会对儿童的健康造成长期影响。母体免疫激活与儿童神经发育障碍的风险增加有关。据报道,神经发育障碍患者的免疫反应异常。此外,母体免疫激活对后代免疫系统的持久影响也有报道。综上所述,这表明母体免疫激活的影响并不局限于中枢神经系统。在此,我们探讨了母体免疫激活对后代免疫系统的影响。我们首先描述了免疫系统的发育过程,并概述了临床前模型中细胞因子谱、免疫细胞谱、免疫细胞功能和免疫诱导的变化。此外,我们还重点介绍了有关母体接触 COVID-19 对新生儿免疫系统的影响以及对儿童健康的潜在后果的最新研究。我们的综述显示,在某些条件下,母体的免疫激活会改变后代的免疫系统,但所报道的影响是相互矛盾和不一致的。一般来说,表观遗传修饰被认为是胎儿编程的机制。现有数据不足以确定可能导致免疫编程的具体途径。由于 COVID-19 的流行,现在更多的研究集中于母体免疫激活对后代健康可能产生的影响。未来针对后代对母体免疫激活的免疫反应的研究,可以阐明有助于胎儿免疫编程和对后代长期健康影响的具体途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in Immunopathology
Seminars in Immunopathology 医学-病理学
CiteScore
19.80
自引率
2.20%
发文量
69
审稿时长
12 months
期刊介绍: The aim of Seminars in Immunopathology is to bring clinicians and pathologists up-to-date on developments in the field of immunopathology.For this purpose topical issues will be organized usually with the help of a guest editor.Recent developments are summarized in review articles by authors who have personally contributed to the specific topic.
期刊最新文献
Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Advances in manufacturing chimeric antigen receptor immune cell therapies. Beyond defence: Immune architects of ovarian health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1