Precision Control of Amphoteric Doping in Cu x Bi2Se3 Nanoplates.

Precision Chemistry Pub Date : 2024-08-04 eCollection Date: 2024-08-26 DOI:10.1021/prechem.4c00046
Huaying Ren, Jingxuan Zhou, Ao Zhang, Zixi Wu, Jin Cai, Xiaoyang Fu, Jingyuan Zhou, Zhong Wan, Boxuan Zhou, Yu Huang, Xiangfeng Duan
{"title":"Precision Control of Amphoteric Doping in Cu <sub><i>x</i></sub> Bi<sub>2</sub>Se<sub>3</sub> Nanoplates.","authors":"Huaying Ren, Jingxuan Zhou, Ao Zhang, Zixi Wu, Jin Cai, Xiaoyang Fu, Jingyuan Zhou, Zhong Wan, Boxuan Zhou, Yu Huang, Xiangfeng Duan","doi":"10.1021/prechem.4c00046","DOIUrl":null,"url":null,"abstract":"<p><p>Copper-doped Bi<sub>2</sub>Se<sub>3</sub> (Cu <sub><i>x</i></sub> Bi<sub>2</sub>Se<sub>3</sub>) is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states. However, the copper dopants in Cu <sub><i>x</i></sub> Bi<sub>2</sub>Se<sub>3</sub> display complex electronic behaviors and may function as either electron donors or acceptors depending on their concentration and atomic sites within the Bi<sub>2</sub>Se<sub>3</sub> crystal lattice. Thus, a precise understanding and control of the doping concentration and sites is of both fundamental and practical significance. Herein, we report a solution-based one-pot synthesis of Cu <sub><i>x</i></sub> Bi<sub>2</sub>Se<sub>3</sub> nanoplates with systematically tunable Cu doping concentrations and doping sites. Our studies reveal a gradual evolution from intercalative sites to substitutional sites with increasing Cu concentrations. The Cu atoms at intercalative sites function as electron donors while those at the substitutional sites function as electron acceptors, producing distinct effects on the electronic properties of the resulting materials. We further show that Cu<sub>0.18</sub>Bi<sub>2</sub>Se<sub>3</sub> exhibits superconducting behavior, which is not present in Bi<sub>2</sub>Se<sub>3</sub>, highlighting the essential role of Cu doping in tailoring exotic quantum properties. This study establishes an efficient methodology for precise synthesis of Cu <sub><i>x</i></sub> Bi<sub>2</sub>Se<sub>3</sub> with tailored doping concentrations, doping sites, and electronic properties.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.4c00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Copper-doped Bi2Se3 (Cu x Bi2Se3) is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states. However, the copper dopants in Cu x Bi2Se3 display complex electronic behaviors and may function as either electron donors or acceptors depending on their concentration and atomic sites within the Bi2Se3 crystal lattice. Thus, a precise understanding and control of the doping concentration and sites is of both fundamental and practical significance. Herein, we report a solution-based one-pot synthesis of Cu x Bi2Se3 nanoplates with systematically tunable Cu doping concentrations and doping sites. Our studies reveal a gradual evolution from intercalative sites to substitutional sites with increasing Cu concentrations. The Cu atoms at intercalative sites function as electron donors while those at the substitutional sites function as electron acceptors, producing distinct effects on the electronic properties of the resulting materials. We further show that Cu0.18Bi2Se3 exhibits superconducting behavior, which is not present in Bi2Se3, highlighting the essential role of Cu doping in tailoring exotic quantum properties. This study establishes an efficient methodology for precise synthesis of Cu x Bi2Se3 with tailored doping concentrations, doping sites, and electronic properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu x Bi2Se3 纳米板中两性掺杂的精确控制。
掺铜的 Bi2Se3(Cu x Bi2Se3)在保留独特的狄拉克表面态的同时,还能定制其电子特性并诱导奇异的电荷相关性,因而备受关注。然而,Cu x Bi2Se3 中的铜掺杂物显示出复杂的电子行为,根据其在 Bi2Se3 晶格中的浓度和原子位点的不同,既可以作为电子供体,也可以作为电子受体。因此,精确了解和控制掺杂浓度和掺杂点既具有基础意义,又具有实际意义。在此,我们报告了一种基于溶液的一锅合成 Cu x Bi2Se3 纳米板的方法,该方法具有系统可调的 Cu 掺杂浓度和掺杂位点。我们的研究发现,随着铜浓度的增加,插层位点逐渐演变为置换位点。插层位点上的铜原子充当电子供体,而置换位点上的铜原子充当电子受体,从而对所得材料的电子特性产生了不同的影响。我们进一步研究发现,Cu0.18Bi2Se3 具有超导特性,而 Bi2Se3 则不具有这种特性,这凸显了铜掺杂在定制奇异量子特性中的重要作用。这项研究为精确合成具有定制掺杂浓度、掺杂位点和电子特性的 Cu x Bi2Se3 确立了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Precision Chemistry for Two-Dimensional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1