CT reconstruction using diffusion posterior sampling conditioned on a nonlinear measurement model.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-01 Epub Date: 2024-08-30 DOI:10.1117/1.JMI.11.4.043504
Shudong Li, Xiao Jiang, Matthew Tivnan, Grace J Gang, Yuan Shen, J Webster Stayman
{"title":"CT reconstruction using diffusion posterior sampling conditioned on a nonlinear measurement model.","authors":"Shudong Li, Xiao Jiang, Matthew Tivnan, Grace J Gang, Yuan Shen, J Webster Stayman","doi":"10.1117/1.JMI.11.4.043504","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recently, diffusion posterior sampling (DPS), where score-based diffusion priors are combined with likelihood models, has been used to produce high-quality computed tomography (CT) images given low-quality measurements. This technique permits one-time, unsupervised training of a CT prior, which can then be incorporated with an arbitrary data model. However, current methods rely on a linear model of X-ray CT physics to reconstruct. Although it is common to linearize the transmission tomography reconstruction problem, this is an approximation to the true and inherently nonlinear forward model. We propose a DPS method that integrates a general nonlinear measurement model.</p><p><strong>Approach: </strong>We implement a traditional unconditional diffusion model by training a prior score function estimator and apply Bayes' rule to combine this prior with a measurement likelihood score function derived from the nonlinear physical model to arrive at a posterior score function that can be used to sample the reverse-time diffusion process. We develop computational enhancements for the approach and evaluate the reconstruction approach in several simulation studies.</p><p><strong>Results: </strong>The proposed nonlinear DPS provides improved performance over traditional reconstruction methods and DPS with a linear model. Moreover, as compared with a conditionally trained deep learning approach, the nonlinear DPS approach shows a better ability to provide high-quality images for different acquisition protocols.</p><p><strong>Conclusion: </strong>This plug-and-play method allows the incorporation of a diffusion-based prior with a general nonlinear CT measurement model. This permits the application of the approach to different systems, protocols, etc., without the need for any additional training.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.043504","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Recently, diffusion posterior sampling (DPS), where score-based diffusion priors are combined with likelihood models, has been used to produce high-quality computed tomography (CT) images given low-quality measurements. This technique permits one-time, unsupervised training of a CT prior, which can then be incorporated with an arbitrary data model. However, current methods rely on a linear model of X-ray CT physics to reconstruct. Although it is common to linearize the transmission tomography reconstruction problem, this is an approximation to the true and inherently nonlinear forward model. We propose a DPS method that integrates a general nonlinear measurement model.

Approach: We implement a traditional unconditional diffusion model by training a prior score function estimator and apply Bayes' rule to combine this prior with a measurement likelihood score function derived from the nonlinear physical model to arrive at a posterior score function that can be used to sample the reverse-time diffusion process. We develop computational enhancements for the approach and evaluate the reconstruction approach in several simulation studies.

Results: The proposed nonlinear DPS provides improved performance over traditional reconstruction methods and DPS with a linear model. Moreover, as compared with a conditionally trained deep learning approach, the nonlinear DPS approach shows a better ability to provide high-quality images for different acquisition protocols.

Conclusion: This plug-and-play method allows the incorporation of a diffusion-based prior with a general nonlinear CT measurement model. This permits the application of the approach to different systems, protocols, etc., without the need for any additional training.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用以非线性测量模型为条件的扩散后向采样进行 CT 重建。
目的:最近,基于分数的扩散先验与似然模型相结合的扩散后验采样(DPS)被用于在低质量测量条件下生成高质量的计算机断层扫描(CT)图像。这种技术允许对 CT 先验进行一次性、无监督的训练,然后将其与任意数据模型相结合。然而,目前的方法依赖于 X 射线 CT 物理的线性模型来重建。虽然将透射断层重建问题线性化是很常见的做法,但这只是对真正的非线性前向模型的近似。我们提出了一种整合了一般非线性测量模型的 DPS 方法:方法:我们通过训练先验得分函数估计器来实现传统的无条件扩散模型,并应用贝叶斯法则将该先验值与从非线性物理模型得出的测量似然得分函数相结合,从而得出后验得分函数,该函数可用于对反向时间扩散过程进行采样。我们开发了该方法的计算增强功能,并在多项模拟研究中对重构方法进行了评估:结果:与传统的重建方法和使用线性模型的 DPS 相比,所提出的非线性 DPS 性能有所提高。此外,与有条件训练的深度学习方法相比,非线性 DPS 方法在为不同采集协议提供高质量图像方面表现出更强的能力:这种即插即用的方法允许将基于扩散的先验与一般非线性 CT 测量模型相结合。这就允许将该方法应用于不同的系统、协议等,而无需任何额外的训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1