Self-Supervised Anomaly Detection from Anomalous Training Data via Iterative Latent Token Masking.

Ashay Patel, Petru-Daniel Tudosiu, Walter H L Pinaya, Mark S Graham, Olusola Adeleke, Gary Cook, Vicky Goh, Sebastien Ourselin, M Jorge Cardoso
{"title":"Self-Supervised Anomaly Detection from Anomalous Training Data via Iterative Latent Token Masking.","authors":"Ashay Patel, Petru-Daniel Tudosiu, Walter H L Pinaya, Mark S Graham, Olusola Adeleke, Gary Cook, Vicky Goh, Sebastien Ourselin, M Jorge Cardoso","doi":"10.1109/ICCVW60793.2023.00254","DOIUrl":null,"url":null,"abstract":"<p><p>Anomaly detection and segmentation pose an important task across sectors ranging from medical imaging analysis to industry quality control. However, current unsupervised approaches require training data to not contain any anomalies, a requirement that can be especially challenging in many medical imaging scenarios. In this paper, we propose Iterative Latent Token Masking, a self-supervised framework derived from a robust statistics point of view, translating an iterative model fitting with M-estimators to the task of anomaly detection. In doing so, this allows the training of unsupervised methods on datasets heavily contaminated with anomalous images. Our method stems from prior work on using Transformers, combined with a Vector Quantized-Variational Autoencoder, for anomaly detection, a method with state-of-the-art performance when trained on normal (non-anomalous) data. More importantly, we utilise the token masking capabilities of Transformers to filter out suspected anomalous tokens from each sample's sequence in the training set in an iterative self-supervised process, thus overcoming the difficulties of highly anomalous training data. Our work also highlights shortfalls in current state-of-the-art self-supervised, self-trained and unsupervised models when faced with small proportions of anomalous training data. We evaluate our method on whole-body PET data in addition to showing its wider application in more common computer vision tasks such as the industrial MVTec Dataset. Using varying levels of anomalous training data, our method showcases a superior performance over several state-of-the-art models, drawing attention to the potential of this approach.</p>","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":"2023 ","pages":"2394-2402"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW60793.2023.00254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection and segmentation pose an important task across sectors ranging from medical imaging analysis to industry quality control. However, current unsupervised approaches require training data to not contain any anomalies, a requirement that can be especially challenging in many medical imaging scenarios. In this paper, we propose Iterative Latent Token Masking, a self-supervised framework derived from a robust statistics point of view, translating an iterative model fitting with M-estimators to the task of anomaly detection. In doing so, this allows the training of unsupervised methods on datasets heavily contaminated with anomalous images. Our method stems from prior work on using Transformers, combined with a Vector Quantized-Variational Autoencoder, for anomaly detection, a method with state-of-the-art performance when trained on normal (non-anomalous) data. More importantly, we utilise the token masking capabilities of Transformers to filter out suspected anomalous tokens from each sample's sequence in the training set in an iterative self-supervised process, thus overcoming the difficulties of highly anomalous training data. Our work also highlights shortfalls in current state-of-the-art self-supervised, self-trained and unsupervised models when faced with small proportions of anomalous training data. We evaluate our method on whole-body PET data in addition to showing its wider application in more common computer vision tasks such as the industrial MVTec Dataset. Using varying levels of anomalous training data, our method showcases a superior performance over several state-of-the-art models, drawing attention to the potential of this approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过迭代潜在令牌屏蔽从异常训练数据中进行自监督异常检测
从医学成像分析到工业质量控制,异常检测和分割都是一项重要任务。然而,当前的无监督方法要求训练数据不包含任何异常,而这一要求在许多医学成像场景中尤其具有挑战性。在本文中,我们提出了迭代潜在令牌屏蔽技术,这是一种从稳健统计角度出发的自监督框架,它将使用 M 估计器的迭代模型拟合转换为异常检测任务。这样,就可以在异常图像严重污染的数据集上训练无监督方法。我们的方法源于之前使用变换器结合矢量量化变异自动编码器进行异常检测的工作,这种方法在正常(非异常)数据上进行训练时具有最先进的性能。更重要的是,我们利用变换器的标记屏蔽功能,在迭代自我监督过程中从训练集中的每个样本序列中过滤出可疑的异常标记,从而克服了高度异常训练数据带来的困难。我们的工作还凸显了当前最先进的自监督、自训练和无监督模型在面对小部分异常训练数据时的不足之处。我们在全身 PET 数据上对我们的方法进行了评估,并展示了该方法在更常见的计算机视觉任务(如工业 MVTec 数据集)中的广泛应用。在使用不同程度的异常训练数据时,我们的方法显示出优于几种最先进模型的性能,从而引起了人们对这种方法潜力的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Supervised Anomaly Detection from Anomalous Training Data via Iterative Latent Token Masking. Self-supervised Semantic Segmentation: Consistency over Transformation. Learning to Learn: How to Continuously Teach Humans and Machines. STRIDE: Street View-based Environmental Feature Detection and Pedestrian Collision Prediction. Robust AMD Stage Grading with Exclusively OCTA Modality Leveraging 3D Volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1