Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-08-15 eCollection Date: 2024-08-26 DOI:10.1021/jacsau.4c00610
Xinyu Ning, Darshita Budhadev, Sara Pollastri, Inga Nehlmeier, Amy Kempf, Iain Manfield, W Bruce Turnbull, Stefan Pöhlmann, Anna Bernardi, Xin Li, Yuan Guo, Dejian Zhou
{"title":"Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties.","authors":"Xinyu Ning, Darshita Budhadev, Sara Pollastri, Inga Nehlmeier, Amy Kempf, Iain Manfield, W Bruce Turnbull, Stefan Pöhlmann, Anna Bernardi, Xin Li, Yuan Guo, Dejian Zhou","doi":"10.1021/jacsau.4c00610","DOIUrl":null,"url":null,"abstract":"<p><p>Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (<i>e.g</i>, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (<i>e.g</i>., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (<i>e.g</i>., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM <i>K</i> <sub>d</sub>s, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-G<i>x</i>-psDiMan binding is enthalpy-driven, with a standard binding Δ<i>H</i> <sup>0</sup> of ∼ -95 kJ mol<sup>-1</sup>, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with G<i>x</i>-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single G<i>x</i>-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that G<i>x</i>-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC<sub>50</sub> values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established G<i>x</i>-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 8","pages":"3295-3309"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (e.g, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (e.g., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (e.g., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM K ds, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-Gx-psDiMan binding is enthalpy-driven, with a standard binding ΔH 0 of ∼ -95 kJ mol-1, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with Gx-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single Gx-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that Gx-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC50 values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established Gx-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多价拟甘聚糖-金纳米粒子揭示甘聚糖显示对多价凝集素-甘聚糖相互作用生物物理学和抗病毒性能的关键作用
多价凝集素-聚糖相互作用(MLGIs)广泛存在,对生物学至关重要,因此成为极具吸引力的治疗靶标。遗憾的是,人们对几种关键的多价凝集素-糖相互作用的结构和生物物理机制仍然知之甚少,这限制了我们设计空间匹配的糖共轭物作为针对特定多价凝集素-糖相互作用的潜在疗法的能力。我们最近证明,天然低聚甘露糖涂层纳米粒子是 MLGIs 的强大探针。它们不仅能提供定量的亲和力和结合热力学数据,还能提供关键的结构信息(如结合位点的方向和模式),有助于设计针对特定 MLGIs 的糖结合疗法。尽管取得了成功,但设计参数(如聚糖类型、密度和支架大小)如何控制其 MLGI 生物物理和抗病毒特性仍有待阐明。一种合成的假二甘露糖(psDiMan)配体已被证明能选择性地与树突状细胞表面的四聚体凝集素 DC-SIGN 结合,而不是其他一些具有单价甘露糖特异性但具有不同细胞功能的多聚体凝集素。在这里,我们将 psDiMan 多价显示在不同尺寸(如 5 纳米和 13 纳米,以下分别称为 G5 和 G13 psDiMan)的金纳米粒子(GNPs)上,以探究支架尺寸和聚糖显示如何控制其与 DC-SIGN 和密切相关的凝集素 DC-SIGNR 的 MLGI 特性。我们的研究表明,G5/13 psDiMan 与 DC-SIGN 的结合力很强,K ds 在亚毫微米以下,亲和力随着支架尺寸的增大而增强,而它们与 DC-SIGNR 的结合力显然不强或很弱。有趣的是,与 DC-SIGN 形成强结合的糖密度阈值很小,与 GNP 大小有关。通过结合与温度相关的亲和力和 Van't Hoff 分析,我们开发了一种新的 GNP 荧光淬灭测定方法,用于测定 MLGI 热力学,结果显示 DC-SIGN-Gx-psDiMan 的结合是焓驱动的,标准结合 ΔH 0 为 ∼ -95 kJ mol-1,是单价结合的 ∼ 4 倍,与等温滴定量热法测得的结果相当。我们进一步发现,DC-SIGN与Gx-psDiMan的亲和力随着GNP支架尺寸的增加而增强,这是由于结合熵罚的减少,而不是由于有利结合焓的增强。我们进一步发现,无论 GNP 大小如何,DC-SIGN 都能与单个 Gx-psDiMan 四价结合,而 DC-SIGNR 的结合则取决于 GNP 大小,与 G5 没有明显结合,与 G13 有弱交联。最后,我们发现 Gx-psDiMans 能有效抑制 DC-SIGN 依赖性的埃博拉假病毒进入细胞的增强作用,EC50 值低于 nM,而它们对 DC-SIGNR 增强的病毒进入没有明显(G5)或微弱(G13)的抑制作用,这与它们在溶液中与 DC-SIGNR 的 MLGI 特性一致。这些结果证明 Gx-psDiMan 是一种多功能的新工具,可用于探究 MLGI 的亲和性、选择性和热力学,以及 GNP-聚糖的抗病毒特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1