Strongly-Confined CsPbI3 Quantum Dots by Surface Cleaning-Induced Ligand Exchange for Spectrally Stable Pure-Red Light-Emitting Diodes with Efficiency Exceeding 26%

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-08-07 DOI:10.1021/acsmaterialslett.4c0091210.1021/acsmaterialslett.4c00912
Ke Ren, Jingcong Hu, Chenghao Bi*, Shibo Wei, Xingyu Wang, Nora H. de Leeuw, Yue Lu*, Manling Sui* and Wenxin Wang*, 
{"title":"Strongly-Confined CsPbI3 Quantum Dots by Surface Cleaning-Induced Ligand Exchange for Spectrally Stable Pure-Red Light-Emitting Diodes with Efficiency Exceeding 26%","authors":"Ke Ren,&nbsp;Jingcong Hu,&nbsp;Chenghao Bi*,&nbsp;Shibo Wei,&nbsp;Xingyu Wang,&nbsp;Nora H. de Leeuw,&nbsp;Yue Lu*,&nbsp;Manling Sui* and Wenxin Wang*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0091210.1021/acsmaterialslett.4c00912","DOIUrl":null,"url":null,"abstract":"<p >The advancement of pure-red perovskite light-emitting diodes (PeLEDs) is still a challenge because of surface “wastes” (like surface vacancies and excessive insulating ligands) on quantum dots (QDs). Herein, we develop a method to synthesize single-halide pure-red CsPbI<sub>3</sub> QDs, combining a strong quantum confinement effect and meticulous surface-cleaning-induced ligand exchange. We achieve pure-red emitting QDs by controlling the size and uniformity under iodide-rich conditions. Subsequently, vacancy defects and insulating ligands are cleared through introducing acid. Then this surface-cleaning process induces ligand exchange to further inhibit the nonradiative recombination and improve the electrical property of QDs. These QDs show a pure-red photoluminescence (PL) at 635 nm with the PL quantum yield (PLQY) of 99%. Finally, PeLEDs, which utilize these QDs, demonstrate a pure-red electroluminescence (EL) peak at 638 nm with a maximum external quantum efficiency (EQE) of 26.0% and an excellent half-lifetime (<i>T</i><sub>50</sub>) of 490 min at an original luminance of 102 cd/m<sup>2</sup>.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00912","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of pure-red perovskite light-emitting diodes (PeLEDs) is still a challenge because of surface “wastes” (like surface vacancies and excessive insulating ligands) on quantum dots (QDs). Herein, we develop a method to synthesize single-halide pure-red CsPbI3 QDs, combining a strong quantum confinement effect and meticulous surface-cleaning-induced ligand exchange. We achieve pure-red emitting QDs by controlling the size and uniformity under iodide-rich conditions. Subsequently, vacancy defects and insulating ligands are cleared through introducing acid. Then this surface-cleaning process induces ligand exchange to further inhibit the nonradiative recombination and improve the electrical property of QDs. These QDs show a pure-red photoluminescence (PL) at 635 nm with the PL quantum yield (PLQY) of 99%. Finally, PeLEDs, which utilize these QDs, demonstrate a pure-red electroluminescence (EL) peak at 638 nm with a maximum external quantum efficiency (EQE) of 26.0% and an excellent half-lifetime (T50) of 490 min at an original luminance of 102 cd/m2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过表面清洁诱导配体交换实现强致密 CsPbI3 量子点,从而生产出光谱稳定、效率超过 26% 的纯红光发光二极管
由于量子点(QDs)的表面 "废物"(如表面空位和过多的绝缘配体),纯红色的过氧化物发光二极管(PeLEDs)的发展仍然是一个挑战。在此,我们开发了一种合成单卤化物纯红色 CsPbI3 QDs 的方法,该方法结合了强大的量子约束效应和细致的表面清洁诱导配体交换。我们在富碘条件下通过控制尺寸和均匀性实现了纯红色发光 QDs。随后,通过引入酸来清除空位缺陷和绝缘配体。然后,这一表面清洁过程会诱导配体交换,从而进一步抑制非辐射重组,改善 QDs 的电学特性。这些 QD 在 635 纳米波长处显示出纯红色的光致发光(PL),PL 量子产率(PLQY)达到 99%。最后,利用这些 QD 的 PeLED 在 638 纳米波长处显示出纯红色电致发光(EL)峰,最大外部量子效率(EQE)为 26.0%,在原始亮度为 102 cd/m2 时,半衰期(T50)为 490 分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1