Can Cheng, Hongyue Jing, Hongtian Ji, Yunpeng Li, Liying Ma, Jingcheng Hao
{"title":"Bioderived carbon aerogels loaded with g-C<sub>3</sub>N<sub>4</sub> and their high Efficacy removing volatile organic compounds (VOCs).","authors":"Can Cheng, Hongyue Jing, Hongtian Ji, Yunpeng Li, Liying Ma, Jingcheng Hao","doi":"10.1016/j.jcis.2024.09.167","DOIUrl":null,"url":null,"abstract":"<p><p>Indoor air pollution, predominantly caused by volatile organic compounds (VOCs), poses significant health hazards when concentrations surpass critical thresholds. Using waste corn straw as carbon source and urea as nitrogen source, straw derived carbon aerogel (CAGH) loaded with g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> was successfully prepared by hydrothermal and water-assisted calcination. Following water-assisted regulation, g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> on CAGH exhibited a mixed structure comprising honeycomb and two-dimensional filaments, while the growth of g-C<sub>3</sub>N<sub>4</sub><sub>H</sub><sub>2</sub><sub>O-N</sub><sub>2</sub><sub>-450-3 h</sub> was uniformly distributed on carbon aerogel in a line-surface combination fashion. This innovative binding method not only enhanced the loading capacity of g-C<sub>3</sub>N<sub>4</sub> and the mechanical elasticity of aerogel, but also exposed a large number of adsorption sites, resulting in a significant increase in its adsorption capacity for VOCs, exceeding that of commercial activated carbon (AC). In comparison to pure g-C<sub>3</sub>N<sub>4</sub>, CAGH exhibited an expanded photo-response range. Under the exposure of visible light, CAGH proved highly effective in eliminating 73.87 % of toluene. In addition, it has demonstrated efficient removal of formaldehyde and acetone VOCs with good cyclic stability. Therefore, this work aims to reduce the emission of pollutants at source and provide an effective and economical strategy for the preparation of clean building materials from renewable materials, with potential applications in the environmental field.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 Pt C","pages":"1112-1121"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.09.167","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Indoor air pollution, predominantly caused by volatile organic compounds (VOCs), poses significant health hazards when concentrations surpass critical thresholds. Using waste corn straw as carbon source and urea as nitrogen source, straw derived carbon aerogel (CAGH) loaded with g-C3N4H2O-N2-450-3 h was successfully prepared by hydrothermal and water-assisted calcination. Following water-assisted regulation, g-C3N4H2O-N2-450-3 h on CAGH exhibited a mixed structure comprising honeycomb and two-dimensional filaments, while the growth of g-C3N4H2O-N2-450-3 h was uniformly distributed on carbon aerogel in a line-surface combination fashion. This innovative binding method not only enhanced the loading capacity of g-C3N4 and the mechanical elasticity of aerogel, but also exposed a large number of adsorption sites, resulting in a significant increase in its adsorption capacity for VOCs, exceeding that of commercial activated carbon (AC). In comparison to pure g-C3N4, CAGH exhibited an expanded photo-response range. Under the exposure of visible light, CAGH proved highly effective in eliminating 73.87 % of toluene. In addition, it has demonstrated efficient removal of formaldehyde and acetone VOCs with good cyclic stability. Therefore, this work aims to reduce the emission of pollutants at source and provide an effective and economical strategy for the preparation of clean building materials from renewable materials, with potential applications in the environmental field.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies