Multifunctional Ternary Oxide for Efficient CsPbBr3 Perovskite Solar Cells on Rigid and Flexible Substrate via All-Low-Temperature Process

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-08-08 DOI:10.1021/acsmaterialslett.4c0125510.1021/acsmaterialslett.4c01255
Bo Xiao, Zijun Yi, Yuchen Xiong, Yihuai Huang, Wenguang Zhang, Qinghui Jiang, Abdul Basit, Guibin Shen, Yubo Luo, Xin Li* and Junyou Yang*, 
{"title":"Multifunctional Ternary Oxide for Efficient CsPbBr3 Perovskite Solar Cells on Rigid and Flexible Substrate via All-Low-Temperature Process","authors":"Bo Xiao,&nbsp;Zijun Yi,&nbsp;Yuchen Xiong,&nbsp;Yihuai Huang,&nbsp;Wenguang Zhang,&nbsp;Qinghui Jiang,&nbsp;Abdul Basit,&nbsp;Guibin Shen,&nbsp;Yubo Luo,&nbsp;Xin Li* and Junyou Yang*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0125510.1021/acsmaterialslett.4c01255","DOIUrl":null,"url":null,"abstract":"<p >Efficient CsPbBr<sub>3</sub> perovskite films and the low-temperature fabrication of electron transport layers (ETLs) are crucial for the commercial viability of CsPbBr<sub>3</sub> perovskite solar cells (PSCs). We present a vapor-assisted solution technique that produces high-quality CsPbBr<sub>3</sub> perovskite films without annealing. Doping ZnO with trivalent metals such as yttrium (Y), antimony (Sb), and iron (Fe) improves the electrical properties and energy alignment with CsPbBr<sub>3</sub>. Our experiments show that Sb doping enhances charge extraction and reduces interface carrier recombination to achieve a power conversion efficiency (PCE) of 9.55% in the inorganic CsPbBr<sub>3</sub> PSCs. The optimized device maintains over 90% of its original PCE after 90 days under 65% relative humidity and 65 °C. Additionally, flexible CsPbBr<sub>3</sub> PSCs with an Sb-ZnO ETL achieve a record 6.06% efficiency with remarkable mechanical durability to retain 91.8% of initial PCE after 1000 bending cycles at a 3 mm curvature radius.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01255","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient CsPbBr3 perovskite films and the low-temperature fabrication of electron transport layers (ETLs) are crucial for the commercial viability of CsPbBr3 perovskite solar cells (PSCs). We present a vapor-assisted solution technique that produces high-quality CsPbBr3 perovskite films without annealing. Doping ZnO with trivalent metals such as yttrium (Y), antimony (Sb), and iron (Fe) improves the electrical properties and energy alignment with CsPbBr3. Our experiments show that Sb doping enhances charge extraction and reduces interface carrier recombination to achieve a power conversion efficiency (PCE) of 9.55% in the inorganic CsPbBr3 PSCs. The optimized device maintains over 90% of its original PCE after 90 days under 65% relative humidity and 65 °C. Additionally, flexible CsPbBr3 PSCs with an Sb-ZnO ETL achieve a record 6.06% efficiency with remarkable mechanical durability to retain 91.8% of initial PCE after 1000 bending cycles at a 3 mm curvature radius.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过全低温工艺在刚性和柔性基底上实现高效碲化镉硼三元包光体太阳能电池的多功能三元氧化物
高效的 CsPbBr3 包晶石薄膜和电子传输层 (ETL) 的低温制造对于 CsPbBr3 包晶石太阳能电池 (PSC) 的商业可行性至关重要。我们提出了一种气相辅助溶液技术,无需退火即可制备出高质量的 CsPbBr3 包晶体薄膜。在 ZnO 中掺杂三价金属,如钇(Y)、锑(Sb)和铁(Fe),可以改善 CsPbBr3 的电学特性和能量排列。我们的实验表明,掺杂锑可增强电荷提取,减少界面载流子重组,从而使无机 CsPbBr3 PSCs 的功率转换效率 (PCE) 达到 9.55%。在相对湿度为 65% 和温度为 65°C 的条件下,经过优化的器件在 90 天后仍能保持 90% 以上的原始 PCE。此外,带有 Sb-ZnO ETL 的柔性 CsPbBr3 PSCs 的效率达到了创纪录的 6.06%,并具有显著的机械耐久性,在 3 毫米曲率半径下弯曲 1000 次后仍能保持 91.8% 的初始 PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1