{"title":"Restaurant food waste valorization by microwave-assisted hydrolysis: Optimization, typological and biochemical analysis","authors":"Payam Torabi , Nasser Hamdami , Nafiseh Soltanizadeh , Omidvar Farhadian , Alain Le-Bail","doi":"10.1016/j.clema.2024.100269","DOIUrl":null,"url":null,"abstract":"<div><p>Annually, a substantial volume of food waste is being released into the environment. Restaurant food waste (RFW) valorization using microwave-assisted hydrolysis (MAH) is a sustainable approach to produce fermentable sugars. However, RFW is composed of different foodstuffs with different physicochemical, nutritional, and degradation rates. This study explored the typological, chemical, and elemental analysis of RFW. Results revealed that the four main types of RFW were vegetable (33.2 %), meat (19.3 %), rice (15.2 %), and bread waste (11.0 %). The key parameters impacting the MAH of typologically sorted RFW were identified using the Plackett–Burman design (PBD). Then the central composite design (CCD) with 30 runs was used to increase reducing sugar content (RSC). The optimized condition was as follows: temperature 96.0 °C, microwave power 340 W, HCl concentration of 1.45 %, and microwave heating time 11.1 min. The derived hydrolysates were characterized for their biochemical and monosaccharide composition.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100269"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000534/pdfft?md5=e8d56f3f57b3a04bb884d79c89147ead&pid=1-s2.0-S2772397624000534-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Annually, a substantial volume of food waste is being released into the environment. Restaurant food waste (RFW) valorization using microwave-assisted hydrolysis (MAH) is a sustainable approach to produce fermentable sugars. However, RFW is composed of different foodstuffs with different physicochemical, nutritional, and degradation rates. This study explored the typological, chemical, and elemental analysis of RFW. Results revealed that the four main types of RFW were vegetable (33.2 %), meat (19.3 %), rice (15.2 %), and bread waste (11.0 %). The key parameters impacting the MAH of typologically sorted RFW were identified using the Plackett–Burman design (PBD). Then the central composite design (CCD) with 30 runs was used to increase reducing sugar content (RSC). The optimized condition was as follows: temperature 96.0 °C, microwave power 340 W, HCl concentration of 1.45 %, and microwave heating time 11.1 min. The derived hydrolysates were characterized for their biochemical and monosaccharide composition.