Yongqiang Kang, Jialin Zhang, Zhipeng Shi, Xuhong Pu, Shuaibing Li
{"title":"A new method for calculating the electric field distribution in particle-particle rotating systems","authors":"Yongqiang Kang, Jialin Zhang, Zhipeng Shi, Xuhong Pu, Shuaibing Li","doi":"10.1016/j.elstat.2024.103967","DOIUrl":null,"url":null,"abstract":"<div><p>In the applied electric field, the behavioral characteristic which occurs in particle-particle systems always are used in dielectric insulation, and nanomaterials regulation, among which is the key to correctly compute the electric field. Because the dipole model without fully considering the particle interactions so that has defects in computing in some cases. This study introduced the mutual-coupling dipole offset distance <em>τ</em> used to describe the degree of inter-particle interaction, the analytical expression of the mutual-coupling dipole moment under the two types of the electric field is obtained, respectively. An original model is established, and by comparison with the finite element method, it is found that even when <em>D</em> = 0.1<em>R</em> and <em>ε</em><sub>pp</sub>/<em>ε</em><sub>f</sub> = 25, the proposed model can describe the inter-particle interaction effectively, and its computational precision better than that of the classical model, which can realize the accurate computation of the electric field distribution around the particle-particle rotating system.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"132 ","pages":"Article 103967"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388624000743","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the applied electric field, the behavioral characteristic which occurs in particle-particle systems always are used in dielectric insulation, and nanomaterials regulation, among which is the key to correctly compute the electric field. Because the dipole model without fully considering the particle interactions so that has defects in computing in some cases. This study introduced the mutual-coupling dipole offset distance τ used to describe the degree of inter-particle interaction, the analytical expression of the mutual-coupling dipole moment under the two types of the electric field is obtained, respectively. An original model is established, and by comparison with the finite element method, it is found that even when D = 0.1R and εpp/εf = 25, the proposed model can describe the inter-particle interaction effectively, and its computational precision better than that of the classical model, which can realize the accurate computation of the electric field distribution around the particle-particle rotating system.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.