Charles Sutherland , Alan D. Henderson , Dean R. Giosio , Andrew J. Trotter , Greg G. Smith
{"title":"Synchronising an IMX219 image sensor and AS7265x spectral sensor to make a novel low-cost spectral camera","authors":"Charles Sutherland , Alan D. Henderson , Dean R. Giosio , Andrew J. Trotter , Greg G. Smith","doi":"10.1016/j.ohx.2024.e00573","DOIUrl":null,"url":null,"abstract":"<div><p>A low-cost novel spectral camera able to be used for near infrared spectroscopy was made by using a Jetson Nano to synchronize a Sony IMX219 NOIR autofocus image sensor, an AMS AS7265x 18-channel spectral sensor and Osram SFH 4737 broadband infrared LED’s. Synchronizing an image sensor and spectral sensor augments a standard RGB image with light spectrum information; capturing the light distribution information normally lost in RGB image capture. Sutherland et al. [1] used this novel spectral camera to examine the dorsal surface of juvenile lobsters as a possible pre-moult detector. Having the image and spectrum in combination allowed the incomplete and unmineralized post-moult dorsal surface to be characterized with 86.7% accuracy for the first time. A proposed application for the spectral camera is to omit the local SFH 4737 light source and use the camera in daylight, effectively making a low-cost substitute hyperspectral snapshot camera. In this configuration the camera may have application for low-cost drone deployment for small scale agriculture.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000671/pdfft?md5=1dcffea6e1fdc274013a521b3e03a13e&pid=1-s2.0-S2468067224000671-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A low-cost novel spectral camera able to be used for near infrared spectroscopy was made by using a Jetson Nano to synchronize a Sony IMX219 NOIR autofocus image sensor, an AMS AS7265x 18-channel spectral sensor and Osram SFH 4737 broadband infrared LED’s. Synchronizing an image sensor and spectral sensor augments a standard RGB image with light spectrum information; capturing the light distribution information normally lost in RGB image capture. Sutherland et al. [1] used this novel spectral camera to examine the dorsal surface of juvenile lobsters as a possible pre-moult detector. Having the image and spectrum in combination allowed the incomplete and unmineralized post-moult dorsal surface to be characterized with 86.7% accuracy for the first time. A proposed application for the spectral camera is to omit the local SFH 4737 light source and use the camera in daylight, effectively making a low-cost substitute hyperspectral snapshot camera. In this configuration the camera may have application for low-cost drone deployment for small scale agriculture.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.