Design of metamaterial thermoelectric generators for efficient energy harvesting

IF 7.1 Q1 ENERGY & FUELS Energy Conversion and Management-X Pub Date : 2024-08-30 DOI:10.1016/j.ecmx.2024.100699
{"title":"Design of metamaterial thermoelectric generators for efficient energy harvesting","authors":"","doi":"10.1016/j.ecmx.2024.100699","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoelectric generators (TEGs) are widely recognized as clean energy solutions that can convert low-grade waste heat into electricity through a temperature gradient. Despite their significant potential, challenges such as low conversion efficiency and high costs have limited their practical applications. In this paper, we present an innovative metamaterial design concept for TEGs with significantly improved efficiency. A Finite Element Model is validated using Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> bulk samples fabricated via the drop-cast method. This model can predict open-circuit voltage and output power as a function of an arbitrary metamaterial design using the commercial software ANSYS®. Four different metastructure designs, including 2D Triangular Honeycomb, Re-entrant, body-centered cubic (BCC), and triply periodic minimal surface (TPMS) structures, are systematically investigated. Through experiments and numerical analysis, the effects of annealing temperature, porosity, and unit cell numbers (UCNs) on the performance of TE legs are explored. It is found that 2D Triangular Honeycomb and BCC structures outperform other configurations due to their capacity to maintain a higher thermal gradient. Optimizing their porosity and UCNs can further enhance the output power. Compared to the traditional designs with bulk TE legs, implementing a 2D metastructure design with 30 % porosity and UCNs of 4 × 4 × 4 can lead to approximately a 100 % increase in power output.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001776/pdfft?md5=da110b86c96e8143b3ef1eb4d2c47afe&pid=1-s2.0-S2590174524001776-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric generators (TEGs) are widely recognized as clean energy solutions that can convert low-grade waste heat into electricity through a temperature gradient. Despite their significant potential, challenges such as low conversion efficiency and high costs have limited their practical applications. In this paper, we present an innovative metamaterial design concept for TEGs with significantly improved efficiency. A Finite Element Model is validated using Bi0.5Sb1.5Te3 bulk samples fabricated via the drop-cast method. This model can predict open-circuit voltage and output power as a function of an arbitrary metamaterial design using the commercial software ANSYS®. Four different metastructure designs, including 2D Triangular Honeycomb, Re-entrant, body-centered cubic (BCC), and triply periodic minimal surface (TPMS) structures, are systematically investigated. Through experiments and numerical analysis, the effects of annealing temperature, porosity, and unit cell numbers (UCNs) on the performance of TE legs are explored. It is found that 2D Triangular Honeycomb and BCC structures outperform other configurations due to their capacity to maintain a higher thermal gradient. Optimizing their porosity and UCNs can further enhance the output power. Compared to the traditional designs with bulk TE legs, implementing a 2D metastructure design with 30 % porosity and UCNs of 4 × 4 × 4 can lead to approximately a 100 % increase in power output.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计超材料热电发电机,实现高效能量采集
热电发电机(TEG)是公认的清洁能源解决方案,可通过温度梯度将低品位废热转化为电能。尽管其潜力巨大,但低转换效率和高成本等挑战限制了其实际应用。在本文中,我们提出了一种创新的超材料设计理念,用于大幅提高效率的 TEG。我们使用通过滴铸方法制造的 Bi0.5Sb1.5Te3 块状样品验证了有限元模型。利用商业软件 ANSYS®,该模型可以预测开路电压和输出功率与任意超材料设计的函数关系。该模型系统地研究了四种不同的超材料设计,包括二维三角蜂窝结构、再入射结构、体心立方(BCC)结构和三周期最小面(TPMS)结构。通过实验和数值分析,探讨了退火温度、孔隙率和单元数(UCN)对 TE 支脚性能的影响。研究发现,二维三角蜂窝结构和 BCC 结构由于能够保持较高的热梯度而优于其他结构。优化其孔隙率和 UCN 可进一步提高输出功率。与采用散装 TE 支脚的传统设计相比,采用孔隙率为 30% 和 UCN 为 4 × 4 × 4 的二维元结构设计可使输出功率提高约 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
期刊最新文献
Water desalination using waste heat recovery of thermal power plant in tropical climate; optimization by AI Thermal management performance of a novel elliptically grooved flat heat pipe system embedded with internally cooled condenser Life cycle greenhouse gas emissions and cost of energy transport from Saudi Arabia with conventional fuels and liquefied natural gas Circulation of self-supplied water for significant energy recovery through heat integration A novel algorithm for optimizing genset operations to minimize fuel consumption in remote diesel-RES microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1