Unveiling New Frontiers of Downlink Training in User-Centric Cell-Free Massive MIMO

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2024-08-20 DOI:10.1109/OJCOMS.2024.3445990
Guillem Femenias;Felip Riera-Palou
{"title":"Unveiling New Frontiers of Downlink Training in User-Centric Cell-Free Massive MIMO","authors":"Guillem Femenias;Felip Riera-Palou","doi":"10.1109/OJCOMS.2024.3445990","DOIUrl":null,"url":null,"abstract":"Cell-free massive MIMO (CF-mMIMO) emerges as a pivotal technology in the landscape of beyond-5G and 6G wireless networks, addressing the ever-increasing demand for seamless connectivity and unprecedented data throughput. This paper undertakes a comprehensive exploration of scalable usercentric (UC) CF-mMIMO systems, focusing on critical aspects of downlink (DL) channel state information (CSI) acquisition and its intricate interactions with both distributed and centralized precoding strategies. The paper delves into the crucial role of DL CSI acquisition, particularly in scenarios of weak channel hardening arising from sparse subsets of access points (APs) serving specific mobile stations (MS) in UC strategies, and transmission over spatially correlated multiple keyhole Ricean fading channels. The main contributions of this research work include in-depth analyses of different detection schemes under varying precoding scenarios, offering valuable insights for practical deployment. The pivotal role of DL CSI acquisition in optimizing the performance of UC CF-mMIMO networks is fully assessed, dismissing the use of DL pilot-based detection approaches and advocating for either centralized precoding architectures with statistical CSI-based decoding strategies at the MSs or distributed precoding schemes with DL blind channel estimation-based decoders at the MSs.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10640135/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-free massive MIMO (CF-mMIMO) emerges as a pivotal technology in the landscape of beyond-5G and 6G wireless networks, addressing the ever-increasing demand for seamless connectivity and unprecedented data throughput. This paper undertakes a comprehensive exploration of scalable usercentric (UC) CF-mMIMO systems, focusing on critical aspects of downlink (DL) channel state information (CSI) acquisition and its intricate interactions with both distributed and centralized precoding strategies. The paper delves into the crucial role of DL CSI acquisition, particularly in scenarios of weak channel hardening arising from sparse subsets of access points (APs) serving specific mobile stations (MS) in UC strategies, and transmission over spatially correlated multiple keyhole Ricean fading channels. The main contributions of this research work include in-depth analyses of different detection schemes under varying precoding scenarios, offering valuable insights for practical deployment. The pivotal role of DL CSI acquisition in optimizing the performance of UC CF-mMIMO networks is fully assessed, dismissing the use of DL pilot-based detection approaches and advocating for either centralized precoding architectures with statistical CSI-based decoding strategies at the MSs or distributed precoding schemes with DL blind channel estimation-based decoders at the MSs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭开以用户为中心的无小区大规模多输入多输出(MIMO)下行链路训练的新领域
无蜂窝大规模多输入多输出(CF-mMIMO)是超越 5G 和 6G 无线网络的关键技术,可满足对无缝连接和前所未有的数据吞吐量不断增长的需求。本文全面探讨了可扩展的以用户为中心(UC)CF-mMIMO 系统,重点关注下行链路(DL)信道状态信息(CSI)获取的关键方面及其与分布式和集中式预编码策略之间错综复杂的相互作用。论文深入探讨了下行链路 CSI 获取的关键作用,尤其是在 UC 策略中服务于特定移动台(MS)的接入点(AP)子集稀疏导致信道硬化较弱的情况下,以及在空间相关的多锁孔赖森衰落信道上传输时。这项研究工作的主要贡献包括深入分析不同预编码情况下的不同检测方案,为实际部署提供有价值的见解。研究充分评估了 DL CSI 获取在优化 UC CF-mMIMO 网络性能方面的关键作用,否定了使用基于 DL 试点的检测方法,提倡在 MS 上采用基于 CSI 统计解码策略的集中式预编码架构,或在 MS 上采用基于 DL 盲信道估计解码器的分布式预编码方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
GP-DGECN: Geometric Prior Dynamic Group Equivariant Convolutional Networks for Specific Emitter Identification A Tractable Framework for Spectrum Coexistence Between Satellite Receivers and Terrestrial Networks A Survey of LoRaWAN-Integrated Wearable Sensor Networks for Human Activity Recognition: Applications, Challenges and Possible Solutions Detection of Zero-Day Attacks in a Software-Defined LEO Constellation Network Using Enhanced Network Metric Predictions Few-Shot Class-Incremental Learning for Network Intrusion Detection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1