Improving Probabilistic Error Cancellation in the Presence of Nonstationary Noise

Samudra Dasgupta;Travis S. Humble
{"title":"Improving Probabilistic Error Cancellation in the Presence of Nonstationary Noise","authors":"Samudra Dasgupta;Travis S. Humble","doi":"10.1109/TQE.2024.3435757","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the stability of probabilistic error cancellation (PEC) outcomes in the presence of nonstationary noise, which is an obstacle to achieving accurate observable estimates. Leveraging Bayesian methods, we design a strategy to enhance PEC stability and accuracy. Our experiments using a five-qubit implementation of the Bernstein–Vazirani algorithm and conducted on the ibm_kolkata device reveal a 42% improvement in accuracy and a 60% enhancement in stability compared to nonadaptive PEC. These results underscore the importance of adaptive estimation processes to effectively address nonstationary noise, vital for advancing PEC utility.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10645687","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10645687/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the stability of probabilistic error cancellation (PEC) outcomes in the presence of nonstationary noise, which is an obstacle to achieving accurate observable estimates. Leveraging Bayesian methods, we design a strategy to enhance PEC stability and accuracy. Our experiments using a five-qubit implementation of the Bernstein–Vazirani algorithm and conducted on the ibm_kolkata device reveal a 42% improvement in accuracy and a 60% enhancement in stability compared to nonadaptive PEC. These results underscore the importance of adaptive estimation processes to effectively address nonstationary noise, vital for advancing PEC utility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进非稳态噪声下的概率误差消除
在本文中,我们研究了非平稳噪声存在时概率误差消除(PEC)结果的稳定性,非平稳噪声是实现精确可观测估计的障碍。利用贝叶斯方法,我们设计了一种增强 PEC 稳定性和准确性的策略。我们在 ibm_kolkata 设备上使用伯恩斯坦-瓦齐拉尼算法的五量子比特实现进行了实验,发现与非自适应 PEC 相比,准确性提高了 42%,稳定性提高了 60%。这些结果凸显了自适应估计过程对有效解决非稳态噪声的重要性,这对提高 PEC 的实用性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
C3-VQA: Cryogenic Counter-Based Coprocessor for Variational Quantum Algorithms RSFQ All-Digital Programmable Multitone Generator for Quantum Applications IEEE Transactions on Quantum Engineering Publication Information Novel Trade-offs in 5 nm FinFET SRAM Arrays at Extremely Low Temperatures Dissipative Variational Quantum Algorithms for Gibbs State Preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1