H. Dong, S. D. M. Jacques, K. T. Butler, O. Gutowski, A.-C. Dippel, M. von Zimmerman, A. M. Beale, A. Vamvakeros
{"title":"Obtaining parallax-free X-ray powder diffraction computed tomography data with a self-supervised neural network","authors":"H. Dong, S. D. M. Jacques, K. T. Butler, O. Gutowski, A.-C. Dippel, M. von Zimmerman, A. M. Beale, A. Vamvakeros","doi":"10.1038/s41524-024-01389-1","DOIUrl":null,"url":null,"abstract":"<p>In this study, we introduce a method designed to eliminate parallax artefacts present in X-ray powder diffraction computed tomography data acquired from large samples. These parallax artefacts manifest as artificial peak shifting, broadening and splitting, leading to inaccurate physicochemical information, such as lattice parameters and crystallite sizes. Our approach integrates a 3D artificial neural network architecture with a forward projector that accounts for the experimental geometry and sample thickness. It is a self-supervised tomographic volume reconstruction approach designed to be chemistry-agnostic, eliminating the need for prior knowledge of the sample’s chemical composition. We showcase the efficacy of this method through its application on both simulated and experimental X-ray powder diffraction tomography data, acquired from a phantom sample and an NMC532 cylindrical lithium-ion battery.</p><figure></figure>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"2014 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01389-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce a method designed to eliminate parallax artefacts present in X-ray powder diffraction computed tomography data acquired from large samples. These parallax artefacts manifest as artificial peak shifting, broadening and splitting, leading to inaccurate physicochemical information, such as lattice parameters and crystallite sizes. Our approach integrates a 3D artificial neural network architecture with a forward projector that accounts for the experimental geometry and sample thickness. It is a self-supervised tomographic volume reconstruction approach designed to be chemistry-agnostic, eliminating the need for prior knowledge of the sample’s chemical composition. We showcase the efficacy of this method through its application on both simulated and experimental X-ray powder diffraction tomography data, acquired from a phantom sample and an NMC532 cylindrical lithium-ion battery.
在本研究中,我们介绍了一种旨在消除从大型样品中获取的 X 射线粉末衍射计算机断层成像数据中存在的视差伪影的方法。这些视差伪影表现为人为的峰值移动、展宽和分裂,导致物理化学信息(如晶格参数和晶粒尺寸)不准确。我们的方法将三维人工神经网络架构与考虑到实验几何和样品厚度的前向投影仪集成在一起。它是一种自我监督的断层体积重建方法,其设计与化学无关,无需事先了解样品的化学成分。我们将这种方法应用于模拟和实验 X 射线粉末衍射层析成像数据,展示了它的功效,这些数据来自一个模型样品和一个 NMC532 圆柱形锂离子电池。
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.