{"title":"Enhancing quantum annealing accuracy through replication-based error mitigation *","authors":"Hristo N Djidjev","doi":"10.1088/2058-9565/ad6eb3","DOIUrl":null,"url":null,"abstract":"Quantum annealers like those manufactured by D-Wave Systems are designed to find high quality solutions to optimization problems that are typically hard for classical computers. They utilize quantum effects like tunneling to evolve toward low-energy states representing solutions to optimization problems. However, their analog nature and limited control functionalities present challenges to correcting or mitigating hardware errors. As quantum computing advances towards applications, effective error suppression is an important research goal. We propose a new approach called replication based mitigation (RBM) based on parallel quantum annealing (QA). In RBM, physical qubits representing the same logical qubit are dispersed across different copies of the problem embedded in the hardware. This mitigates hardware biases, is compatible with limited qubit connectivity in current annealers, and is well-suited for currently available noisy intermediate-scale quantum annealers. Our experimental analysis shows that RBM provides solution quality on par with previous methods while being more flexible and compatible with a wider range of hardware connectivity patterns. In comparisons against standard QA without error mitigation on larger problem instances that could not be handled by previous methods, RBM consistently gets better energies and ground state probabilities across parameterized problem sets.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad6eb3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum annealers like those manufactured by D-Wave Systems are designed to find high quality solutions to optimization problems that are typically hard for classical computers. They utilize quantum effects like tunneling to evolve toward low-energy states representing solutions to optimization problems. However, their analog nature and limited control functionalities present challenges to correcting or mitigating hardware errors. As quantum computing advances towards applications, effective error suppression is an important research goal. We propose a new approach called replication based mitigation (RBM) based on parallel quantum annealing (QA). In RBM, physical qubits representing the same logical qubit are dispersed across different copies of the problem embedded in the hardware. This mitigates hardware biases, is compatible with limited qubit connectivity in current annealers, and is well-suited for currently available noisy intermediate-scale quantum annealers. Our experimental analysis shows that RBM provides solution quality on par with previous methods while being more flexible and compatible with a wider range of hardware connectivity patterns. In comparisons against standard QA without error mitigation on larger problem instances that could not be handled by previous methods, RBM consistently gets better energies and ground state probabilities across parameterized problem sets.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.