Quantum-centric computation of molecular excited states with extended sample-based quantum diagonalization

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2025-02-27 DOI:10.1088/2058-9565/adb781
Stefano Barison, Javier Robledo Moreno and Mario Motta
{"title":"Quantum-centric computation of molecular excited states with extended sample-based quantum diagonalization","authors":"Stefano Barison, Javier Robledo Moreno and Mario Motta","doi":"10.1088/2058-9565/adb781","DOIUrl":null,"url":null,"abstract":"The simulation of molecular electronic structure is an important application of quantum devices. Recently, it has been shown that quantum devices can be effectively combined with classical supercomputing centers in the context of the sample-based quantum diagonalization (SQD) algorithm. This allowed the largest electronic structure quantum simulation to date (77 qubits) and opened near-term devices to practical use cases in chemistry toward the hundred-qubit mark. However, the description of many important physical and chemical properties of those systems, such as photo-absorption/-emission, requires a treatment that goes beyond the ground state alone. In this work, we extend the SQD algorithm to determine low-lying molecular excited states. The extended-SQD method improves over the original SQD method in accuracy, at the cost of an additional computational step. It also improves over quantum subspace expansion based on single and double electronic excitations, a widespread approach to excited states on pre-fault-tolerant quantum devices, in both accuracy and efficiency. We employ the extended SQD method to compute the first singlet (S1) and triplet (T1) excited states of the nitrogen molecule with a correlation-consistent basis set, and the ground- and excited-state properties of the [2Fe-2S] cluster.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"21 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adb781","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation of molecular electronic structure is an important application of quantum devices. Recently, it has been shown that quantum devices can be effectively combined with classical supercomputing centers in the context of the sample-based quantum diagonalization (SQD) algorithm. This allowed the largest electronic structure quantum simulation to date (77 qubits) and opened near-term devices to practical use cases in chemistry toward the hundred-qubit mark. However, the description of many important physical and chemical properties of those systems, such as photo-absorption/-emission, requires a treatment that goes beyond the ground state alone. In this work, we extend the SQD algorithm to determine low-lying molecular excited states. The extended-SQD method improves over the original SQD method in accuracy, at the cost of an additional computational step. It also improves over quantum subspace expansion based on single and double electronic excitations, a widespread approach to excited states on pre-fault-tolerant quantum devices, in both accuracy and efficiency. We employ the extended SQD method to compute the first singlet (S1) and triplet (T1) excited states of the nitrogen molecule with a correlation-consistent basis set, and the ground- and excited-state properties of the [2Fe-2S] cluster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Effective field theories in broadband quantum optics: modeling phase modulation and two-photon loss from cascaded quadratic nonlinearities Quantum-centric computation of molecular excited states with extended sample-based quantum diagonalization High-rate continuous-variable measurement device-independent quantum key distribution with finite-size security Non-iterative disentangled unitary coupled-cluster based on lie-algebraic structure A Gigahertz configurable silicon photonic integrated circuit nonlinear interferometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1