{"title":"Flavonol derivatives containing piperazine and quinoxaline fragments: synthesis and antifungal activity.","authors":"Yi Liu, Hui Xin, Yuhong Wang, Qing Zhou, Jiao Tian, Chunmei Hu, Xingping Luo, Haotao Pu, Wei Xue","doi":"10.1007/s11030-024-10977-8","DOIUrl":null,"url":null,"abstract":"<p><p>A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC<sub>50</sub>) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10977-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC50) was 12.9 and 25.8 μg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 μg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 μg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 μg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;