Transcription repression of estrogen receptor alpha by ghrelin/Gq/11/YAP signaling in granulosa cells promotes polycystic ovary syndrome.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY Human Cell Pub Date : 2024-11-01 Epub Date: 2024-09-03 DOI:10.1007/s13577-024-01127-1
Pengfei Zhu, Xingyu Bi, Dan Su, Xiaoling Li, Yanhua Chen, Zhijiao Song, Lijiang Zhao, Yaoqing Wang, Suming Xu, Xueqing Wu
{"title":"Transcription repression of estrogen receptor alpha by ghrelin/Gq/11/YAP signaling in granulosa cells promotes polycystic ovary syndrome.","authors":"Pengfei Zhu, Xingyu Bi, Dan Su, Xiaoling Li, Yanhua Chen, Zhijiao Song, Lijiang Zhao, Yaoqing Wang, Suming Xu, Xueqing Wu","doi":"10.1007/s13577-024-01127-1","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystic ovarian syndrome (PCOS) is a prevalent endocrinological disorder affected by ghrelin. This study aimed to investigate the molecular mechanisms underlying the effects of ghrelin on PCOS manifestations in mice and to assess the therapeutic potential of ghrelin. Female C57BL/6 mice were subcutaneously injected with 6 mg/100 g dehydroepiandrosterone (DHEA) for 20 days to induce PCOS. Alterations in reproductive cycles, ovarian morphology, serum sex hormone levels, and related signaling markers were examined. Furthermore, ghrelin-induced effects on granulosa cells and the role of ghrelin/Gq/11/ Yes-associated protein (YAP) signaling were studied by silencing Gαq/11 or YAP using si-RNAs. Finally, we evaluated the therapeutic potential of anti-ghrelin antibodies in DHEA-induced PCOS mice. DHEA administration led to significant PCOS-associated changes including weight gain, disrupted estrous cycles, ovarian morphological alterations, and hormonal imbalances in mice, with elevated Gαq/11 and acylated ghrelin expression, which was also noted in PCOS patients. However, treatment with anti-ghrelin antibodies effectively managed DHEA-induced damage in PCOS mice. In vitro, ghrelin exposure resulted in granulosa cell injury and modulated estrogen receptors alpha (ERα) and YAP protein levels, whereas silencing YAP and Gαq/11 reversed ghrelin-induced detrimental effects and up-regulated ERα expression. This study revealed that DHEA-induced PCOS traits in mice could be improved by anti-ghrelin antibodies, with the ghrelin/Gq/11/YAP signaling pathway identified as a crucial mediator in granulosa cells, affecting ERα transcription to regulate PCOS. These findings suggest a potential therapeutic strategy for the treatment of PCOS.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01127-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polycystic ovarian syndrome (PCOS) is a prevalent endocrinological disorder affected by ghrelin. This study aimed to investigate the molecular mechanisms underlying the effects of ghrelin on PCOS manifestations in mice and to assess the therapeutic potential of ghrelin. Female C57BL/6 mice were subcutaneously injected with 6 mg/100 g dehydroepiandrosterone (DHEA) for 20 days to induce PCOS. Alterations in reproductive cycles, ovarian morphology, serum sex hormone levels, and related signaling markers were examined. Furthermore, ghrelin-induced effects on granulosa cells and the role of ghrelin/Gq/11/ Yes-associated protein (YAP) signaling were studied by silencing Gαq/11 or YAP using si-RNAs. Finally, we evaluated the therapeutic potential of anti-ghrelin antibodies in DHEA-induced PCOS mice. DHEA administration led to significant PCOS-associated changes including weight gain, disrupted estrous cycles, ovarian morphological alterations, and hormonal imbalances in mice, with elevated Gαq/11 and acylated ghrelin expression, which was also noted in PCOS patients. However, treatment with anti-ghrelin antibodies effectively managed DHEA-induced damage in PCOS mice. In vitro, ghrelin exposure resulted in granulosa cell injury and modulated estrogen receptors alpha (ERα) and YAP protein levels, whereas silencing YAP and Gαq/11 reversed ghrelin-induced detrimental effects and up-regulated ERα expression. This study revealed that DHEA-induced PCOS traits in mice could be improved by anti-ghrelin antibodies, with the ghrelin/Gq/11/YAP signaling pathway identified as a crucial mediator in granulosa cells, affecting ERα transcription to regulate PCOS. These findings suggest a potential therapeutic strategy for the treatment of PCOS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颗粒细胞中的ghrelin/Gq/11/YAP信号对雌激素受体α的转录抑制促进了多囊卵巢综合征的发生。
多囊卵巢综合征(PCOS)是一种受胃泌素影响的常见内分泌疾病。本研究旨在探讨胃泌素影响小鼠多囊卵巢综合征表现的分子机制,并评估胃泌素的治疗潜力。雌性C57BL/6小鼠皮下注射6毫克/100克脱氢表雄酮(DHEA)20天,诱导多囊卵巢综合征。实验研究了生殖周期、卵巢形态、血清性激素水平和相关信号标记物的变化。此外,通过使用si-RNAs沉默Gαq/11或YAP,研究了胃泌素诱导对颗粒细胞的影响以及胃泌素/Gq/11/Yes相关蛋白(YAP)信号转导的作用。最后,我们评估了抗ghrelin抗体在DHEA诱导的多囊卵巢综合征小鼠中的治疗潜力。服用DHEA会导致小鼠体重增加、发情周期紊乱、卵巢形态改变和内分泌失调等与多囊卵巢综合征相关的显著变化,Gαq/11和酰化胃泌素表达升高,这在多囊卵巢综合征患者中也有发现。然而,使用抗胃泌素抗体治疗可有效控制多囊卵巢综合征小鼠体内由 DHEA 引起的损伤。在体外,格列林暴露导致颗粒细胞损伤,并调节雌激素受体α(ERα)和YAP蛋白水平,而沉默YAP和Gαq/11可逆转格列林诱导的有害影响,并上调ERα的表达。这项研究揭示了抗胃泌素抗体可改善DHEA诱导的小鼠多囊卵巢综合征性状,并确定胃泌素/Gq/11/YAP信号通路是颗粒细胞中的关键介质,可影响ERα转录,从而调节多囊卵巢综合征。这些发现为治疗多囊卵巢综合症提供了一种潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Cell
Human Cell CELL BIOLOGY-
CiteScore
5.90
自引率
2.30%
发文量
176
审稿时长
4.5 months
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
期刊最新文献
In Vitro differentiation of hair-follicle bulge stem cells into synaptophysin-expressing neurons: a potential new approach for neuro-regeneration. Generation of human induced pluripotent stem cell lines derived from patients of cystic biliary atresia. Pancreatic cancer-derived exosomal miR-510 promotes macrophage M2 polarization and facilitates cancer cell aggressive phenotypes. Strong genetic effect on gout revealed by genetic risk score from meta-analysis of two genome-wide association studies. Identification of novel gout loci from trans-ethnic meta-analysis of serum urate level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1