{"title":"In vitro generation of spiral ganglion neurons from embryonic stem cells.","authors":"Oluwafemi S Agboola, Meng Deng, Zhengqing Hu","doi":"10.1007/s13577-025-01194-y","DOIUrl":null,"url":null,"abstract":"<p><p>Spiral ganglion neurons (SGNs) are crucial for transmitting auditory signals from the inner ear to the brainstem, playing a pivotal role in the peripheral hearing process. However, SGNs are usually damaged by a variety of insults, which causes permanent hearing loss. Generating SGNs from stem cells represents a promising strategy for advancing cell-replacement therapies to treat sensorineural hearing loss. SGNs comprise two subtypes of neurons (types 1 and 2); however, it remains a challenge to regenerate SGN subtypes. This study aimed to investigate the generation and characterization of SGN subtype neurons induced from embryonic stem cells (ESCs) in vitro. ESCs were cultured and treated with retinoic acid, followed by neuronal induction. The differentiated cells showed protein expressions of multiple neuronal markers, suggesting the generation of neuron-like cells. Protein expressions of vGlut-1 and GATA-3 indicate the generation of glutamatergic otic neuron-like cells. ESC-derived neuron-like cells cultured for 6 days showed co-expressions of calretinin, calbindin, and POU4F1 antibodies, suggesting an early stage of SGN subtype induction. However, 14-day in vitro induction generated cells showing two distinct SGN subtypes: a group of cells expressed calretinin (subtype 1a/2 precursor), and the other group expressed calbindin and POU4F1 (subtype 1b/c). These results suggest that in vitro generation of SGN subtypes from ESCs is culture time dependent.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 3","pages":"68"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01194-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spiral ganglion neurons (SGNs) are crucial for transmitting auditory signals from the inner ear to the brainstem, playing a pivotal role in the peripheral hearing process. However, SGNs are usually damaged by a variety of insults, which causes permanent hearing loss. Generating SGNs from stem cells represents a promising strategy for advancing cell-replacement therapies to treat sensorineural hearing loss. SGNs comprise two subtypes of neurons (types 1 and 2); however, it remains a challenge to regenerate SGN subtypes. This study aimed to investigate the generation and characterization of SGN subtype neurons induced from embryonic stem cells (ESCs) in vitro. ESCs were cultured and treated with retinoic acid, followed by neuronal induction. The differentiated cells showed protein expressions of multiple neuronal markers, suggesting the generation of neuron-like cells. Protein expressions of vGlut-1 and GATA-3 indicate the generation of glutamatergic otic neuron-like cells. ESC-derived neuron-like cells cultured for 6 days showed co-expressions of calretinin, calbindin, and POU4F1 antibodies, suggesting an early stage of SGN subtype induction. However, 14-day in vitro induction generated cells showing two distinct SGN subtypes: a group of cells expressed calretinin (subtype 1a/2 precursor), and the other group expressed calbindin and POU4F1 (subtype 1b/c). These results suggest that in vitro generation of SGN subtypes from ESCs is culture time dependent.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.