Reliable generation of privacy-preserving synthetic electronic health record time series via diffusion models.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of the American Medical Informatics Association Pub Date : 2024-11-01 DOI:10.1093/jamia/ocae229
Muhang Tian, Bernie Chen, Allan Guo, Shiyi Jiang, Anru R Zhang
{"title":"Reliable generation of privacy-preserving synthetic electronic health record time series via diffusion models.","authors":"Muhang Tian, Bernie Chen, Allan Guo, Shiyi Jiang, Anru R Zhang","doi":"10.1093/jamia/ocae229","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Electronic health records (EHRs) are rich sources of patient-level data, offering valuable resources for medical data analysis. However, privacy concerns often restrict access to EHRs, hindering downstream analysis. Current EHR deidentification methods are flawed and can lead to potential privacy leakage. Additionally, existing publicly available EHR databases are limited, preventing the advancement of medical research using EHR. This study aims to overcome these challenges by generating realistic and privacy-preserving synthetic EHRs time series efficiently.</p><p><strong>Materials and methods: </strong>We introduce a new method for generating diverse and realistic synthetic EHR time series data using denoizing diffusion probabilistic models. We conducted experiments on 6 databases: Medical Information Mart for Intensive Care III and IV, the eICU Collaborative Research Database (eICU), and non-EHR datasets on Stocks and Energy. We compared our proposed method with 8 existing methods.</p><p><strong>Results: </strong>Our results demonstrate that our approach significantly outperforms all existing methods in terms of data fidelity while requiring less training effort. Additionally, data generated by our method yield a lower discriminative accuracy compared to other baseline methods, indicating the proposed method can generate data with less privacy risk.</p><p><strong>Discussion: </strong>The proposed model utilizes a mixed diffusion process to generate realistic synthetic EHR samples that protect patient privacy. This method could be useful in tackling data availability issues in the field of healthcare by reducing barrier to EHR access and supporting research in machine learning for health.</p><p><strong>Conclusion: </strong>The proposed diffusion model-based method can reliably and efficiently generate synthetic EHR time series, which facilitates the downstream medical data analysis. Our numerical results show the superiority of the proposed method over all other existing methods.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae229","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Electronic health records (EHRs) are rich sources of patient-level data, offering valuable resources for medical data analysis. However, privacy concerns often restrict access to EHRs, hindering downstream analysis. Current EHR deidentification methods are flawed and can lead to potential privacy leakage. Additionally, existing publicly available EHR databases are limited, preventing the advancement of medical research using EHR. This study aims to overcome these challenges by generating realistic and privacy-preserving synthetic EHRs time series efficiently.

Materials and methods: We introduce a new method for generating diverse and realistic synthetic EHR time series data using denoizing diffusion probabilistic models. We conducted experiments on 6 databases: Medical Information Mart for Intensive Care III and IV, the eICU Collaborative Research Database (eICU), and non-EHR datasets on Stocks and Energy. We compared our proposed method with 8 existing methods.

Results: Our results demonstrate that our approach significantly outperforms all existing methods in terms of data fidelity while requiring less training effort. Additionally, data generated by our method yield a lower discriminative accuracy compared to other baseline methods, indicating the proposed method can generate data with less privacy risk.

Discussion: The proposed model utilizes a mixed diffusion process to generate realistic synthetic EHR samples that protect patient privacy. This method could be useful in tackling data availability issues in the field of healthcare by reducing barrier to EHR access and supporting research in machine learning for health.

Conclusion: The proposed diffusion model-based method can reliably and efficiently generate synthetic EHR time series, which facilitates the downstream medical data analysis. Our numerical results show the superiority of the proposed method over all other existing methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过扩散模型可靠生成保护隐私的合成电子健康记录时间序列。
目的:电子健康记录(EHR)是患者级别数据的丰富来源,为医疗数据分析提供了宝贵的资源。然而,隐私问题往往限制了对电子健康记录的访问,从而阻碍了下游分析。目前的电子病历去标识化方法存在缺陷,可能导致潜在的隐私泄露。此外,现有的公开电子病历数据库有限,阻碍了利用电子病历进行医学研究的进展。本研究旨在通过有效生成真实且保护隐私的合成电子病历时间序列来克服这些挑战:我们介绍了一种使用去噪扩散概率模型生成多样化和真实的合成电子病历时间序列数据的新方法。我们在 6 个数据库上进行了实验:我们在 6 个数据库上进行了实验:重症监护医疗信息市场 III 和 IV、eICU 协作研究数据库(eICU)以及股票和能源非电子病历数据集。我们将提出的方法与 8 种现有方法进行了比较:结果表明,我们的方法在数据保真度方面明显优于所有现有方法,同时所需的训练工作也更少。此外,与其他基线方法相比,我们的方法生成的数据具有更低的判别准确性,这表明我们提出的方法可以生成具有更低隐私风险的数据:所提出的模型利用混合扩散过程生成保护患者隐私的真实合成电子病历样本。这种方法可以减少电子病历访问障碍,支持健康机器学习研究,从而有助于解决医疗保健领域的数据可用性问题:结论:所提出的基于扩散模型的方法可以可靠、高效地生成合成电子病历时间序列,从而为下游医疗数据分析提供便利。我们的数值结果表明,所提出的方法优于所有其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
期刊最新文献
Trending in the right direction: critical access hospitals increased adoption of advanced electronic health record functions from 2018 to 2023. Evaluating gradient-based explanation methods for neural network ECG analysis using heatmaps. The role of routine and structured social needs data collection in improving care in US hospitals. Correction to: Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review. Is ChatGPT worthy enough for provisioning clinical decision support?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1