Anton Thieme , Sean Renwick , Michaela Marschmann , Pedro Ivo Guimaraes , Susanne Weissenborn , Jamie Clifton
{"title":"Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment","authors":"Anton Thieme , Sean Renwick , Michaela Marschmann , Pedro Ivo Guimaraes , Susanne Weissenborn , Jamie Clifton","doi":"10.1016/j.slast.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><p>The pharmaceutical industry is increasingly embracing laboratory automation to enhance experimental efficiency and operational resilience, particularly through the integration of automated liquid handlers (ALHs). This paper explores the integration of the low-cost Opentrons OT-2 liquid handling robot with F. Hoffmann-La Roche AG's in-house workflow orchestration software, AutoLab, to overcome barriers to lab automation. By leveraging the OT-2′s development-oriented interfaces and AutoLab's modular architecture, we achieved a user-friendly, cost-efficient, and flexible automation solution that aligns with FAIR (findable, accessible, interoperable, reusable) data principles. We demonstrate an advanced workflow development methodology, utilizing the software architecture, that facilitates the creation of two flexible pipetting protocols and medium complexity assays. This deep integration approach diminishes the learning curve for novice users while simultaneously enhancing the overall efficiency and reliability of the experimental workflow. Our findings suggest that such integrations can significantly mitigate the challenges associated with lab automation, including cost, complexity, and adaptability, paving the way for more accessible and robust automated systems in pharmaceutical research.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 5","pages":"Article 100180"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000621/pdfft?md5=d145d30056e4716d7085335eaf583030&pid=1-s2.0-S2472630324000621-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000621","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The pharmaceutical industry is increasingly embracing laboratory automation to enhance experimental efficiency and operational resilience, particularly through the integration of automated liquid handlers (ALHs). This paper explores the integration of the low-cost Opentrons OT-2 liquid handling robot with F. Hoffmann-La Roche AG's in-house workflow orchestration software, AutoLab, to overcome barriers to lab automation. By leveraging the OT-2′s development-oriented interfaces and AutoLab's modular architecture, we achieved a user-friendly, cost-efficient, and flexible automation solution that aligns with FAIR (findable, accessible, interoperable, reusable) data principles. We demonstrate an advanced workflow development methodology, utilizing the software architecture, that facilitates the creation of two flexible pipetting protocols and medium complexity assays. This deep integration approach diminishes the learning curve for novice users while simultaneously enhancing the overall efficiency and reliability of the experimental workflow. Our findings suggest that such integrations can significantly mitigate the challenges associated with lab automation, including cost, complexity, and adaptability, paving the way for more accessible and robust automated systems in pharmaceutical research.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.