Under the Sea: Investigation of Telson Morphology and Cryptic Diversity within Eucopia sculpticauda, a Deep-Sea Lophogastrid from the Gulf of Mexico (Peracarida: Lophogastrida).

IF 2.2 3区 生物学 Q1 ZOOLOGY Integrative and Comparative Biology Pub Date : 2024-10-28 DOI:10.1093/icb/icae141
Lys M Isma, Charles G Golightly, Heather D Bracken-Grissom
{"title":"Under the Sea: Investigation of Telson Morphology and Cryptic Diversity within Eucopia sculpticauda, a Deep-Sea Lophogastrid from the Gulf of Mexico (Peracarida: Lophogastrida).","authors":"Lys M Isma, Charles G Golightly, Heather D Bracken-Grissom","doi":"10.1093/icb/icae141","DOIUrl":null,"url":null,"abstract":"<p><p>The field of phylogenetics employs a variety of methods and techniques to study the evolution of life across the planet. Understanding evolutionary relationships is crucial to enriching our understanding of how genes and organisms have evolved throughout time and how they could possibly evolve in the future. Eucopia sculpticauda Faxon, 1893 is a deep-water peracarid in the order Lophogastrida Boas, 1883, which can often be found in high abundances in pelagic trawls. The species can be found along the Mariana Trench, in the Mid-Atlantic Ridge, west Atlantic and east Pacific Oceans, and in the Gulf of Mexico and as deep as 7526 m. Recent collections of E. sculpticauda in the Gulf of Mexico have revealed putative cryptic diversity within the species based on both molecular and morphological evidence. Previous studies have documented two different morphotypes of the telson: the terminal part of the pleon (abdomen) and part of the tail fan. In adults, the morphotypes can be distinguished by lateral constrictions in the telson. This evidence, combined with a previous barcoding study, led to the speculation that telson morphology may be a distinguishing character useful to define cryptic diversity within E. sculpticauda. This study presents additional molecular data from the mitochondrial genes cytochrome c oxidase subunit I, and the large ribosomal subunit (16S), and the nuclear histone 3 gene (H3) to investigate telson morphotypes in relation to evolutionary history within this species. Molecular data identified two strongly supported clades, lending support for potential cryptic diversification within the Gulf of Mexico. Investigations into telson morphology suggest that this character may be informative, but the morphotypes were sometimes ambiguous and additional characters could not be found that discriminate clades. At present, our data suggest early evidence for cryptic diversification within Gulf of Mexico populations, but additional morphological characters and geographic sampling are needed before a new species can be described.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae141","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The field of phylogenetics employs a variety of methods and techniques to study the evolution of life across the planet. Understanding evolutionary relationships is crucial to enriching our understanding of how genes and organisms have evolved throughout time and how they could possibly evolve in the future. Eucopia sculpticauda Faxon, 1893 is a deep-water peracarid in the order Lophogastrida Boas, 1883, which can often be found in high abundances in pelagic trawls. The species can be found along the Mariana Trench, in the Mid-Atlantic Ridge, west Atlantic and east Pacific Oceans, and in the Gulf of Mexico and as deep as 7526 m. Recent collections of E. sculpticauda in the Gulf of Mexico have revealed putative cryptic diversity within the species based on both molecular and morphological evidence. Previous studies have documented two different morphotypes of the telson: the terminal part of the pleon (abdomen) and part of the tail fan. In adults, the morphotypes can be distinguished by lateral constrictions in the telson. This evidence, combined with a previous barcoding study, led to the speculation that telson morphology may be a distinguishing character useful to define cryptic diversity within E. sculpticauda. This study presents additional molecular data from the mitochondrial genes cytochrome c oxidase subunit I, and the large ribosomal subunit (16S), and the nuclear histone 3 gene (H3) to investigate telson morphotypes in relation to evolutionary history within this species. Molecular data identified two strongly supported clades, lending support for potential cryptic diversification within the Gulf of Mexico. Investigations into telson morphology suggest that this character may be informative, but the morphotypes were sometimes ambiguous and additional characters could not be found that discriminate clades. At present, our data suggest early evidence for cryptic diversification within Gulf of Mexico populations, but additional morphological characters and geographic sampling are needed before a new species can be described.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海底:墨西哥湾深海栉水母(Peracarida: Lophogastrida)的尾柄形态和隐蔽多样性研究。
系统发生学领域采用各种方法和技术来研究地球上生命的进化。了解进化关系对于丰富我们对基因和生物在整个时期如何进化以及未来可能如何进化的认识至关重要。Eucopia sculpticauda Faxon, 1893 是一种属于 Lophogastrida Boas, 1883 目中的深水孔雀鱼,经常可以在中上层拖网中发现其大量存在。该物种可在马里亚纳海沟沿岸、大西洋中脊、西大西洋和东太平洋以及墨西哥湾发现,最深处达 7526 米。最近在墨西哥湾采集到的 E. sculpticauda 根据分子和形态学证据揭示了该物种的隐秘多样性。以前的研究记录了两种不同的鱼体形态:褶的末端部分(腹部)和尾扇的一部分。在成体中,这两种形态可以通过褶皱的侧面来区分。这一证据与之前的条形码研究相结合,使我们推测,鱼尾鳍形态可能是E. sculpticauda的一个区分特征,有助于界定其内部的隐性多样性。本研究提供了线粒体基因细胞色素 c 氧化酶亚单位 I 和大核糖体亚单位(16S)以及核组蛋白 3 基因(H3)的额外分子数据,以研究该物种中与进化历史相关的鳍状器形态。分子数据确定了两个强支持的支系,为墨西哥湾内潜在的隐性分化提供了支持。对鱼耳轴形态的研究表明,这一特征可能具有一定的信息量,但其形态有时并不明确,而且也找不到能区分支系的其他特征。目前,我们的数据表明墨西哥湾种群内部存在隐性分化的早期证据,但在描述一个新物种之前,还需要更多的形态特征和地理取样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
期刊最新文献
Big fish can't jump? Allometry of terrestrial jumping in cyprinodontiform fishes. Combining Morphological Characteristics and DNA Barcoding Techniques Confirm Sea Urchins of the Genus Echinometra (Echinodermata: Echinoidea) in Marine Habitat Located at Extreme Regions of the Caribbean Sea. Marine Debris Harbor Unique, yet Functionally Similar Cryptofauna Communities. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Hurricane Irma Linked to Coral Skeletal Density Shifts on the Florida Keys Reef Tract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1