Investigating the research trajectory and future trends of immune disorders in diabetes cardiovascular complications: A bibliometric analysis over the past decade based on big data
{"title":"Investigating the research trajectory and future trends of immune disorders in diabetes cardiovascular complications: A bibliometric analysis over the past decade based on big data","authors":"","doi":"10.1016/j.arr.2024.102473","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Cardiovascular complications of diabetes are a top cause of death in diabetics and often involve immune system problems. Despite numerous studies, there's a shortage of extensive data to advance this field. This study aims to systematically analyze the role of immune dysregulation in these complications using bibliometric methods, to outline the research path and predict future directions.</p></div><div><h3>Methods</h3><p>Published from January 1, 2014 to December 31, 2023, 2826 records from the Web of Science Core Collection were analyzed. Collaboration networks, keyword co-occurrences, references, and research hotspots were visualized and analyzed using Microsoft Office Excel 2019, VOSviewer, CiteSpace, and R software.</p></div><div><h3>Results</h3><p>The number of research papers and citations on this topic has been increasing from 2014 to 2023, with significant contributions from the United States and China. Studies have focused on the effects of oxidative stress, inflammation, metabolism, gut microbiota, and COVID-19 on diabetic heart problems, highlighting the role of immune dysregulation in these diseases.</p></div><div><h3>Conclusion</h3><p>This research provides an overview of immune dysregulation in the cardiovascular complications of diabetes, explores potential treatments including immunomodulation, insulin resistance, and the benefits of vitamin D on cardiovascular disease, and helps advance the field.</p></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724002915","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Cardiovascular complications of diabetes are a top cause of death in diabetics and often involve immune system problems. Despite numerous studies, there's a shortage of extensive data to advance this field. This study aims to systematically analyze the role of immune dysregulation in these complications using bibliometric methods, to outline the research path and predict future directions.
Methods
Published from January 1, 2014 to December 31, 2023, 2826 records from the Web of Science Core Collection were analyzed. Collaboration networks, keyword co-occurrences, references, and research hotspots were visualized and analyzed using Microsoft Office Excel 2019, VOSviewer, CiteSpace, and R software.
Results
The number of research papers and citations on this topic has been increasing from 2014 to 2023, with significant contributions from the United States and China. Studies have focused on the effects of oxidative stress, inflammation, metabolism, gut microbiota, and COVID-19 on diabetic heart problems, highlighting the role of immune dysregulation in these diseases.
Conclusion
This research provides an overview of immune dysregulation in the cardiovascular complications of diabetes, explores potential treatments including immunomodulation, insulin resistance, and the benefits of vitamin D on cardiovascular disease, and helps advance the field.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.