Numerical analysis of enhanced heat transfer and nanofluid flow mechanisms in fan groove and pyramid truss microchannels

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-09-02 DOI:10.1016/j.ijheatfluidflow.2024.109559
Yunlong Zhou, Liang Xu, Lei Xi, Hongxin Ran, Jianmin Gao, Yunlong Li
{"title":"Numerical analysis of enhanced heat transfer and nanofluid flow mechanisms in fan groove and pyramid truss microchannels","authors":"Yunlong Zhou,&nbsp;Liang Xu,&nbsp;Lei Xi,&nbsp;Hongxin Ran,&nbsp;Jianmin Gao,&nbsp;Yunlong Li","doi":"10.1016/j.ijheatfluidflow.2024.109559","DOIUrl":null,"url":null,"abstract":"<div><p>A combined groove and truss structure is designed for rectangular microchannel heat sinks with 4 % Al<sub>2</sub>O<sub>3</sub> nanofluid as the working fluid to address the heat dissipation requirements of high heat flux density electronic devices. The effects of fan shape, elliptical, waterdrop, rectangular, trapezoidal and triangular grooves on the heat transfer characteristics and mechanical properties of microchannels are investigated. The fan-shaped groove microchannels with the best overall heat transfer performance and excellent mechanical properties. The stress of the fan-shaped grooved truss microchannel is reduced by 76.41 % compared to the smooth microchannel. Three structural parameters were investigated, including the length of the truss in the spreading direction (<em>L<sub>x</sub></em>), the ratio of truss flow downstream length to upstream length (<em>e</em>) and truss rod diameter (<em>d</em>). The performance of the microchannels is reflected by the integrated heat transfer factor and the field coordination number. The individual structural parameters were analysed in a single-factor comparison. The microchannels exhibited the best hydrothermal performance in the Reynolds number range of 500 ∼ 1300 at <em>L<sub>x</sub></em> = 0.8 mm, <em>e</em> = 3, <em>d</em> = 0.2 mm. When the Reynolds number is 900, the microchannel with the optimal parameter combination exhibits a remarkable enhancement of 234 % in the Nusselt number and an 80 % increase in the integrated heat transfer factor compared to the rectangular microchannel.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"109 ","pages":"Article 109559"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002844","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A combined groove and truss structure is designed for rectangular microchannel heat sinks with 4 % Al2O3 nanofluid as the working fluid to address the heat dissipation requirements of high heat flux density electronic devices. The effects of fan shape, elliptical, waterdrop, rectangular, trapezoidal and triangular grooves on the heat transfer characteristics and mechanical properties of microchannels are investigated. The fan-shaped groove microchannels with the best overall heat transfer performance and excellent mechanical properties. The stress of the fan-shaped grooved truss microchannel is reduced by 76.41 % compared to the smooth microchannel. Three structural parameters were investigated, including the length of the truss in the spreading direction (Lx), the ratio of truss flow downstream length to upstream length (e) and truss rod diameter (d). The performance of the microchannels is reflected by the integrated heat transfer factor and the field coordination number. The individual structural parameters were analysed in a single-factor comparison. The microchannels exhibited the best hydrothermal performance in the Reynolds number range of 500 ∼ 1300 at Lx = 0.8 mm, e = 3, d = 0.2 mm. When the Reynolds number is 900, the microchannel with the optimal parameter combination exhibits a remarkable enhancement of 234 % in the Nusselt number and an 80 % increase in the integrated heat transfer factor compared to the rectangular microchannel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扇形槽和金字塔桁架微通道中强化传热和纳米流体流动机制的数值分析
针对高热流密度电子设备的散热要求,设计了一种以 4% Al2O3 纳米流体为工作流体的矩形微通道散热器的沟槽和桁架组合结构。研究了扇形、椭圆形、水滴形、矩形、梯形和三角形凹槽对微槽传热特性和机械性能的影响。扇形凹槽微通道具有最佳的整体传热性能和优异的机械性能。与光滑微通道相比,扇形槽桁架微通道的应力降低了 76.41%。研究了三个结构参数,包括桁架在扩散方向上的长度(Lx)、桁架流下游长度与上游长度之比(e)和桁架杆直径(d)。微通道的性能通过综合传热系数和场协调数反映出来。在单因素比较中对各个结构参数进行了分析。在 Lx = 0.8 mm、e = 3、d = 0.2 mm 时,微通道在雷诺数 500 ∼ 1300 范围内表现出最佳的水热性能。当雷诺数为 900 时,采用最佳参数组合的微通道与矩形微通道相比,努塞尔特数显著提高了 234%,综合传热系数提高了 80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
A MOPSO-based design optimization on molten salt steam generator forced circulation system under off-design conditions Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil Detached eddy simulation of large scale wind turbine wake in offshore environment Direct numerical simulation of turbulent heat transfer in a channel with circular-arc ribs mounted on one wall Optimizing Trombe Wall performances: The impact of L-shaped fins on solar heating efficiency and building thermal comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1