Ting Hu , Yujun Wang , Li Ma , Zhanyong Wang , Haibin Tong
{"title":"Biodegradation of polybutylene succinate by an extracellular esterase from Pseudomonas mendocina","authors":"Ting Hu , Yujun Wang , Li Ma , Zhanyong Wang , Haibin Tong","doi":"10.1016/j.ibiod.2024.105910","DOIUrl":null,"url":null,"abstract":"<div><p>An extracellular esterase (HP) with polybutylene succinate (PBS)-degrading ability was identified from <em>Pseudomonas mendocina</em> SA-1503. The HP also had the ability to degrade poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and polycaprolactone. This HP had optimal activity at pH 9.0 and 40 °C and remained stable at pH 8.0–9.0 and temperatures of 30–40 °C. Mn<sup>2+</sup> promoted the enzyme activity. HP could hydrolyze all <em>p</em>-NP fatty acid ester substrates containing even numbers of carbon atoms from C2 to C18 and had the highest catalytic activity for the <em>p</em>-NP C6 substrate. After 60 h of HP-catalyzed degradation, PBS films experienced a weight loss of more than 60%. Butanedioic acid, 1,4-butanediol, and a series of oligomers were detected in the degradation products of PBS by HP. Further structural analysis of HP revealed that it could be classified as a microbial esterase of <em>α</em>/<em>β</em> hydrolase superfamily and contained a conserved catalytic triad structure (Ser-148, Asp-198, and His-228) with a relatively exposed active site.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"195 ","pages":"Article 105910"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001811","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An extracellular esterase (HP) with polybutylene succinate (PBS)-degrading ability was identified from Pseudomonas mendocina SA-1503. The HP also had the ability to degrade poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and polycaprolactone. This HP had optimal activity at pH 9.0 and 40 °C and remained stable at pH 8.0–9.0 and temperatures of 30–40 °C. Mn2+ promoted the enzyme activity. HP could hydrolyze all p-NP fatty acid ester substrates containing even numbers of carbon atoms from C2 to C18 and had the highest catalytic activity for the p-NP C6 substrate. After 60 h of HP-catalyzed degradation, PBS films experienced a weight loss of more than 60%. Butanedioic acid, 1,4-butanediol, and a series of oligomers were detected in the degradation products of PBS by HP. Further structural analysis of HP revealed that it could be classified as a microbial esterase of α/β hydrolase superfamily and contained a conserved catalytic triad structure (Ser-148, Asp-198, and His-228) with a relatively exposed active site.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.