Characteristics of air-borne and feces-borne ARGs and microbial community in different livestock farms in China

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL Journal of Aerosol Science Pub Date : 2024-08-29 DOI:10.1016/j.jaerosci.2024.106459
{"title":"Characteristics of air-borne and feces-borne ARGs and microbial community in different livestock farms in China","authors":"","doi":"10.1016/j.jaerosci.2024.106459","DOIUrl":null,"url":null,"abstract":"<div><p>Livestock farms are hotspots of antibiotic resistance due to the intensive use of antibiotics, in which the characteristics of air-borne and feces-borne antibiotic resistance genes (ARGs) and microbial communities are of great significance. This study delves into the distribution of ARGs and microbial communities across various livestock farms in China, and the correlation of microorganisms between livestock farms and other global environments was investigated. The concentrations of ARGs and mobile genetic elements (MGEs) in air samples were basically at the same level, but those in fecal samples collected from chicken farms were universally higher than those in pig and cattle farms. There was significant ability of ARGs to spread easily among different bacteria in all samples in livestock farms. Additionally, there may be more possible host bacteria of airborne ARGs in chicken farms. In the global-scale analysis of highly similar microbial communities, the database matching with the highest number of similarities to microbial communities collected from livestock farms is genes related to human sources (54.8%). This study advances our understanding of ARG dynamics in different livestock farms and contributes to the development of sustainable livestock management practices.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224001265","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Livestock farms are hotspots of antibiotic resistance due to the intensive use of antibiotics, in which the characteristics of air-borne and feces-borne antibiotic resistance genes (ARGs) and microbial communities are of great significance. This study delves into the distribution of ARGs and microbial communities across various livestock farms in China, and the correlation of microorganisms between livestock farms and other global environments was investigated. The concentrations of ARGs and mobile genetic elements (MGEs) in air samples were basically at the same level, but those in fecal samples collected from chicken farms were universally higher than those in pig and cattle farms. There was significant ability of ARGs to spread easily among different bacteria in all samples in livestock farms. Additionally, there may be more possible host bacteria of airborne ARGs in chicken farms. In the global-scale analysis of highly similar microbial communities, the database matching with the highest number of similarities to microbial communities collected from livestock farms is genes related to human sources (54.8%). This study advances our understanding of ARG dynamics in different livestock farms and contributes to the development of sustainable livestock management practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国不同畜牧场空气和粪便中 ARGs 的特征及微生物群落
由于抗生素的大量使用,畜牧场成为抗生素耐药性的热点地区,其中空气传播和粪便传播的抗生素耐药基因(ARGs)和微生物群落的特征具有重要意义。本研究探讨了 ARGs 和微生物群落在中国各畜禽养殖场的分布情况,并研究了畜禽养殖场与全球其他环境中微生物的相关性。空气样本中 ARGs 和移动遗传因子(MGEs)的浓度基本处于同一水平,但养鸡场粪便样本中的 ARGs 和移动遗传因子的浓度普遍高于养猪场和养牛场。在畜禽养殖场的所有样本中,ARGs 都具有很强的在不同细菌间轻松传播的能力。此外,养鸡场中空气传播的 ARGs 可能有更多的宿主细菌。在全球范围的高度相似微生物群落分析中,与畜牧场采集的微生物群落相似度最高的数据库匹配是与人类来源有关的基因(54.8%)。这项研究加深了我们对不同畜牧场 ARG 动态的了解,有助于制定可持续的畜牧管理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
期刊最新文献
Non-linear optics for an online probing of the specific surface area of nanoparticles in the aerosol phase Computational and experimental investigation of an aerosol extraction device for use in dentistry Collision frequencies across collision regimes in two-component systems Enhanced organic aerosol formation induced by inorganic aerosol formed in laboratory photochemical experiments Development of a source-term migration model for a large bubble formed in a core disruptive accident
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1