{"title":"3D printing applications in smart farming and food processing","authors":"","doi":"10.1016/j.atech.2024.100553","DOIUrl":null,"url":null,"abstract":"<div><p>Additive manufacturing, also known as 3D printing, is an amazing innovation with a wide range of uses in intelligent agriculture and food processing. Along with adjustable farming equipment and autonomous agricultural instruments like drones and robots, it offers real-time data on plant health, nutrient levels, and soil state. 3D printing has reinvented food processing by enabling personalized nutrition solutions, particularly in the field of medicinal nutrition. It also makes it possible to alter the textures and structures of food, creating novel sensory experiences and better-quality goods. 3D printing contributes to sustainable food production by reducing food waste (10–30 %) and using alternative protein sources. According to the study, AI and 3D-assisted IoT sensors can help increase yield by 10 % to 15 % while significantly reducing crop deterioration. They can also help reduce water usage by 20 % to 25 %, labor requirements by 20 % to 30 %, and overall power consumption by 20 %. However, high costs, complex technical and design knowledge, and limitations on production speed and scale are obstacles to broader use. It's also necessary to handle safety and regulatory concerns. 3D printing has a promising future in various fields thanks to advancements in bioprinting, multifunctional materials, blockchain, and artificial intelligence integration. These advancements could boost 3D printing's potential and result in higher output, more sustainable practices, and higher-quality products.</p></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772375524001588/pdfft?md5=466ba2814bf11784686635d683fdac2a&pid=1-s2.0-S2772375524001588-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524001588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing, also known as 3D printing, is an amazing innovation with a wide range of uses in intelligent agriculture and food processing. Along with adjustable farming equipment and autonomous agricultural instruments like drones and robots, it offers real-time data on plant health, nutrient levels, and soil state. 3D printing has reinvented food processing by enabling personalized nutrition solutions, particularly in the field of medicinal nutrition. It also makes it possible to alter the textures and structures of food, creating novel sensory experiences and better-quality goods. 3D printing contributes to sustainable food production by reducing food waste (10–30 %) and using alternative protein sources. According to the study, AI and 3D-assisted IoT sensors can help increase yield by 10 % to 15 % while significantly reducing crop deterioration. They can also help reduce water usage by 20 % to 25 %, labor requirements by 20 % to 30 %, and overall power consumption by 20 %. However, high costs, complex technical and design knowledge, and limitations on production speed and scale are obstacles to broader use. It's also necessary to handle safety and regulatory concerns. 3D printing has a promising future in various fields thanks to advancements in bioprinting, multifunctional materials, blockchain, and artificial intelligence integration. These advancements could boost 3D printing's potential and result in higher output, more sustainable practices, and higher-quality products.