Cover crop impacts on soil organic matter dynamics and its quantification using UAV and proximal sensing

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2024-10-30 DOI:10.1016/j.atech.2024.100621
Nikolaos-Christos Vavlas , Rima Porre , Liang Meng , Ali Elhakeem , Fenny van Egmond , Lammert Kooistra , Gerlinde B. De Deyn
{"title":"Cover crop impacts on soil organic matter dynamics and its quantification using UAV and proximal sensing","authors":"Nikolaos-Christos Vavlas ,&nbsp;Rima Porre ,&nbsp;Liang Meng ,&nbsp;Ali Elhakeem ,&nbsp;Fenny van Egmond ,&nbsp;Lammert Kooistra ,&nbsp;Gerlinde B. De Deyn","doi":"10.1016/j.atech.2024.100621","DOIUrl":null,"url":null,"abstract":"<div><div>Soil health is a critical aspect of sustainable agriculture, with soil organic matter (SOM) serving as a key indicator. In arable fields, growing cover crops has been advocated as a prime practice to promote SOM accumulation. However, the effectiveness of cover crops to promote SOM accumulation can vary widely. Furthermore, accurate quantification of SOM at field scale is severely constrained by the labour intensity and destructive nature of traditional methods, which limits the ability to quantify and monitor cover crop impacts on SOM. We tested whether cover crop mixtures promote SOM accumulation more than cover crop monocultures in a 6-year field experiment with arable crop rotation on sandy soil. We found that the cover crops radish and oat-radish mixture significantly increased SOM levels compared to the fallow treatment. Next, on soil sampled in year 4, we explored the use of proximal (VIS-NIR, MIR) and remote sensing using Unmanned Aerial Vehicles (UAVs) to upscale SOM from wet lab-based point samples to the whole field and map its SOM status. Thereto, we used Random Forest (RF), Support Vector Regression (SVR), and Partial Least Squares (PLS) models and found that the best fitting model depended on the type of spectral sensor. With proximal sensing (MIR) the best SOM prediction was achieved using SVR (R<sup>2</sup>= 0.84, RMSE= 1.55 g/kg SOM). For UAV imagery with hyperspectral camera the best model was RF (R<sup>2</sup> = 0.69, RMSE= 2.19 g/kg SOM) and enabled digital mapping of SOM distribution across the field. The accuracy of MIR enabled identifying radish cover crop treatments as having on average higher SOM levels compared to the fallow. However, infield spatial SOM variation can override cover crop effects on SOM levels. Therefore, UAV time series are required to remotely quantify cover crop impacts on SOM changes. Overall, our results show potential for combining proximal and UAV-based sensing SOM as a tool for more efficient and accurate spatiotemporal monitoring of SOM at field scale, which can aid in promoting sustainable agricultural practices that enhance soil health.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"9 ","pages":"Article 100621"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524002260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Soil health is a critical aspect of sustainable agriculture, with soil organic matter (SOM) serving as a key indicator. In arable fields, growing cover crops has been advocated as a prime practice to promote SOM accumulation. However, the effectiveness of cover crops to promote SOM accumulation can vary widely. Furthermore, accurate quantification of SOM at field scale is severely constrained by the labour intensity and destructive nature of traditional methods, which limits the ability to quantify and monitor cover crop impacts on SOM. We tested whether cover crop mixtures promote SOM accumulation more than cover crop monocultures in a 6-year field experiment with arable crop rotation on sandy soil. We found that the cover crops radish and oat-radish mixture significantly increased SOM levels compared to the fallow treatment. Next, on soil sampled in year 4, we explored the use of proximal (VIS-NIR, MIR) and remote sensing using Unmanned Aerial Vehicles (UAVs) to upscale SOM from wet lab-based point samples to the whole field and map its SOM status. Thereto, we used Random Forest (RF), Support Vector Regression (SVR), and Partial Least Squares (PLS) models and found that the best fitting model depended on the type of spectral sensor. With proximal sensing (MIR) the best SOM prediction was achieved using SVR (R2= 0.84, RMSE= 1.55 g/kg SOM). For UAV imagery with hyperspectral camera the best model was RF (R2 = 0.69, RMSE= 2.19 g/kg SOM) and enabled digital mapping of SOM distribution across the field. The accuracy of MIR enabled identifying radish cover crop treatments as having on average higher SOM levels compared to the fallow. However, infield spatial SOM variation can override cover crop effects on SOM levels. Therefore, UAV time series are required to remotely quantify cover crop impacts on SOM changes. Overall, our results show potential for combining proximal and UAV-based sensing SOM as a tool for more efficient and accurate spatiotemporal monitoring of SOM at field scale, which can aid in promoting sustainable agricultural practices that enhance soil health.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
覆盖作物对土壤有机质动态的影响以及利用无人机和近距离传感技术对其进行量化
土壤健康是可持续农业的一个重要方面,而土壤有机质(SOM)则是一个关键指标。在耕地中,种植覆盖作物一直被认为是促进土壤有机质积累的主要做法。然而,覆盖作物在促进 SOM 积累方面的效果差异很大。此外,传统方法的劳动强度和破坏性严重制约了田间规模 SOM 的精确量化,从而限制了量化和监测覆盖作物对 SOM 影响的能力。我们在沙质土壤上进行了一项为期 6 年的轮作田间试验,测试了覆盖作物混作是否比覆盖作物单作更能促进 SOM 的积累。我们发现,与休耕处理相比,覆盖作物萝卜和燕麦-萝卜混合物能显著提高 SOM 水平。接下来,在第 4 年取样的土壤上,我们探索了使用近距离(VIS-NIR、MIR)和无人机(UAV)遥感技术,将湿实验室点样的 SOM 放大到整个田地,并绘制其 SOM 状态图。为此,我们使用了随机森林(RF)、支持向量回归(SVR)和偏最小二乘法(PLS)模型,发现最佳拟合模型取决于光谱传感器的类型。对于近距离传感(MIR),使用 SVR 可实现最佳 SOM 预测(R2= 0.84,RMSE= 1.55 g/kg SOM)。对于使用高光谱相机的无人机图像,最佳模型是 RF(R2=0.69,RMSE= 2.19 克/千克 SOM),并能以数字方式绘制整个田野的 SOM 分布图。与休耕相比,近红外光谱仪的精确度可确定萝卜覆盖作物处理的平均 SOM 水平更高。不过,田间空间 SOM 的变化可能会超过覆盖作物对 SOM 水平的影响。因此,需要使用无人机时间序列来远程量化覆盖作物对 SOM 变化的影响。总之,我们的研究结果表明,将近端和基于无人机的 SOM 传感结合起来,作为一种在田间尺度上对 SOM 进行更高效、更准确的时空监测的工具,具有很大的潜力,有助于推广可持续农业实践,提高土壤健康水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Development of a low-cost smart irrigation system for sustainable water management in the Mediterranean region Cover crop impacts on soil organic matter dynamics and its quantification using UAV and proximal sensing Design and development of machine vision robotic arm for vegetable crops in hydroponics Cybersecurity threats and mitigation measures in agriculture 4.0 and 5.0 Farmer's attitudes towards GHG emissions and adoption to low-cost sensor-driven smart farming for mitigation: The case of Ireland tillage and horticultural farmers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1