Shubha Brata Nath , Sourav Kanti Addya , Sandip Chakraborty , Soumya K. Ghosh
{"title":"CSMD: Container state management for deployment in cloud data centers","authors":"Shubha Brata Nath , Sourav Kanti Addya , Sandip Chakraborty , Soumya K. Ghosh","doi":"10.1016/j.future.2024.107495","DOIUrl":null,"url":null,"abstract":"<div><p>As the containers are lightweight in resource usage, they are preferred for cloud and edge computing service deployment. Containers serve the requests whenever a user sends a query; however, they remain idle when no user request comes. Again, improving the consolidation ratio of container deployments is essential to ensure fewer servers are used in a cloud data center with an optimal resource balance. To increase the consolidation ratio of a cloud data center, in this paper, we propose a system called <em>Container State Management for Deployment</em> (CSMD) to manage the container states. CSMD uses an algorithm to checkpoint the idle containers so that their resources can be released. The new containers are deployed using the released resources in a server. In addition, CSMD uses an algorithm to check the container status periodically, and the containers are resumed from the checkpoint state when the user requests them. We evaluate CSMD in Amazon Elastic Compute Cloud (Amazon EC2) by performing efficient state management of the containers. The experiments in the Amazon cloud show that the proposed CSMD system is superior to the existing algorithms as the proposed system increases the consolidation ratio of data centers.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"162 ","pages":"Article 107495"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X2400459X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
As the containers are lightweight in resource usage, they are preferred for cloud and edge computing service deployment. Containers serve the requests whenever a user sends a query; however, they remain idle when no user request comes. Again, improving the consolidation ratio of container deployments is essential to ensure fewer servers are used in a cloud data center with an optimal resource balance. To increase the consolidation ratio of a cloud data center, in this paper, we propose a system called Container State Management for Deployment (CSMD) to manage the container states. CSMD uses an algorithm to checkpoint the idle containers so that their resources can be released. The new containers are deployed using the released resources in a server. In addition, CSMD uses an algorithm to check the container status periodically, and the containers are resumed from the checkpoint state when the user requests them. We evaluate CSMD in Amazon Elastic Compute Cloud (Amazon EC2) by performing efficient state management of the containers. The experiments in the Amazon cloud show that the proposed CSMD system is superior to the existing algorithms as the proposed system increases the consolidation ratio of data centers.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.