Accelerating complex graph queries by summary-based hybrid partitioning for discovering vulnerabilities of distribution equipment

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2025-02-13 DOI:10.1016/j.future.2025.107747
Qiong Wang , Wei He , Shang Yang , Ruoyu Zhao , Yinglong Ma
{"title":"Accelerating complex graph queries by summary-based hybrid partitioning for discovering vulnerabilities of distribution equipment","authors":"Qiong Wang ,&nbsp;Wei He ,&nbsp;Shang Yang ,&nbsp;Ruoyu Zhao ,&nbsp;Yinglong Ma","doi":"10.1016/j.future.2025.107747","DOIUrl":null,"url":null,"abstract":"<div><div>With the high proportion of electrical and electronic devices in China’s power grids, massive graph data of power distribution equipment has been accumulated to share the knowledge across heterogeneous information, while the vulnerabilities of power devices consequently trigger new security risks to the power grid. It is crucial to swiftly and accurately discover the intrinsic vulnerabilities of power devices from the massive power distribution graph data for ensuring safe operation of the power grid. However, diverse complex queries make it inefficient to achieve consistent graph querying performance over the massive power graph data for swift and accurate vulnerability discovery in a highly available and user-friendly manner. To handle the aforementioned problem, in this paper, we present a power graph query-oriented pipeline framework to consistently accelerate complex graph queries over the massive graph data of power distribution equipment for efficient vulnerability discovery. First, we propose a lossless graph summarization method, through which a summary graph is produced from the raw graph data. Second, very different from existing methods, we propose a two-stage hybrid partitioning including the binary partitioning and the consequent ternary partitioning, which is conducted based on the summary graph instead of the raw graph for reducing the search scope and minimizing the input of the queried data, thereby accelerating the query. Third, the complex graph query with multiple triplet patterns will be automatically translated into the Spark SQL statement for query execution without users’ interference, through which the accurate results will be obtained by recovering the summary-based intermediate results. At last, extensive experiments were made over four datasets against some state-of-the-art methods, and the results show that our approach is very competitive with these approaches and achieves consistent graph querying performance in accelerating complex graph queries while obtaining accurate results.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107747"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000421","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the high proportion of electrical and electronic devices in China’s power grids, massive graph data of power distribution equipment has been accumulated to share the knowledge across heterogeneous information, while the vulnerabilities of power devices consequently trigger new security risks to the power grid. It is crucial to swiftly and accurately discover the intrinsic vulnerabilities of power devices from the massive power distribution graph data for ensuring safe operation of the power grid. However, diverse complex queries make it inefficient to achieve consistent graph querying performance over the massive power graph data for swift and accurate vulnerability discovery in a highly available and user-friendly manner. To handle the aforementioned problem, in this paper, we present a power graph query-oriented pipeline framework to consistently accelerate complex graph queries over the massive graph data of power distribution equipment for efficient vulnerability discovery. First, we propose a lossless graph summarization method, through which a summary graph is produced from the raw graph data. Second, very different from existing methods, we propose a two-stage hybrid partitioning including the binary partitioning and the consequent ternary partitioning, which is conducted based on the summary graph instead of the raw graph for reducing the search scope and minimizing the input of the queried data, thereby accelerating the query. Third, the complex graph query with multiple triplet patterns will be automatically translated into the Spark SQL statement for query execution without users’ interference, through which the accurate results will be obtained by recovering the summary-based intermediate results. At last, extensive experiments were made over four datasets against some state-of-the-art methods, and the results show that our approach is very competitive with these approaches and achieves consistent graph querying performance in accelerating complex graph queries while obtaining accurate results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
Self-sovereign identity framework with user-friendly private key generation and rule table Accelerating complex graph queries by summary-based hybrid partitioning for discovering vulnerabilities of distribution equipment DNA: Dual-radio Dual-constraint Node Activation scheduling for energy-efficient data dissemination in IoT Blending lossy and lossless data compression methods to support health data streaming in smart cities Energy–time modelling of distributed multi-population genetic algorithms with dynamic workload in HPC clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1