Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-09-01 DOI:10.1016/S1872-2067(24)60106-3
Hao Dai , Tao Song , Xian Yue , Shuting Wei , Fuzhi Li , Yanchao Xu , Siyan Shu , Ziang Cui , Cheng Wang , Jun Gu , Lele Duan
{"title":"Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4","authors":"Hao Dai ,&nbsp;Tao Song ,&nbsp;Xian Yue ,&nbsp;Shuting Wei ,&nbsp;Fuzhi Li ,&nbsp;Yanchao Xu ,&nbsp;Siyan Shu ,&nbsp;Ziang Cui ,&nbsp;Cheng Wang ,&nbsp;Jun Gu ,&nbsp;Lele Duan","doi":"10.1016/S1872-2067(24)60106-3","DOIUrl":null,"url":null,"abstract":"<div><p>Developing Cu single-atom catalysts (SACs) with well-defined active sites is highly desirable for producing CH<sub>4</sub> in the electrochemical CO<sub>2</sub> reduction reaction and understanding the structure-property relationship. Herein, a new graphdiyne analogue with uniformly distributed N<sub>2</sub>-bidentate (note that N<sub>2</sub>-bidentate site = N^N-bidentate site; N<sub>2</sub> ≠ dinitrogen gas in this work) sites are synthesized. Due to the strong interaction between Cu and the N<sub>2</sub>-bidentate site, a Cu SAC with isolated undercoordinated Cu-N<sub>2</sub> sites (Cu<sub>1.0</sub>/N<sub>2</sub>-GDY) is obtained, with the Cu loading of 1.0 wt%. Cu<sub>1.0</sub>/N<sub>2</sub>-GDY exhibits the highest Faradaic efficiency (FE) of 80.6% for CH<sub>4</sub> in electrocatalytic reduction of CO<sub>2</sub> at −0.96 V <em>vs.</em> RHE, and the partial current density of CH<sub>4</sub> is 160 mA cm<sup>−2</sup>. The selectivity for CH<sub>4</sub> is maintained above 70% when the total current density is 100 to 300 mA cm<sup>−2</sup>. More remarkably, the Cu<sub>1.0</sub>/N<sub>2</sub>-GDY achieves a mass activity of 53.2 A/mg<sub>Cu</sub> toward CH<sub>4</sub> under −1.18 V <em>vs.</em> RHE. <em>In situ</em> electrochemical spectroscopic studies reveal that undercoordinated Cu-N<sub>2</sub> sites are more favorable in generating key *COOH and *CHO intermediate than Cu nanoparticle counterparts. This work provides an effective pathway to produce SACs with undercoordinated Metal-N<sub>2</sub> sites toward efficient electrocatalysis.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 123-132"},"PeriodicalIF":15.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Developing Cu single-atom catalysts (SACs) with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO2 reduction reaction and understanding the structure-property relationship. Herein, a new graphdiyne analogue with uniformly distributed N2-bidentate (note that N2-bidentate site = N^N-bidentate site; N2 ≠ dinitrogen gas in this work) sites are synthesized. Due to the strong interaction between Cu and the N2-bidentate site, a Cu SAC with isolated undercoordinated Cu-N2 sites (Cu1.0/N2-GDY) is obtained, with the Cu loading of 1.0 wt%. Cu1.0/N2-GDY exhibits the highest Faradaic efficiency (FE) of 80.6% for CH4 in electrocatalytic reduction of CO2 at −0.96 V vs. RHE, and the partial current density of CH4 is 160 mA cm−2. The selectivity for CH4 is maintained above 70% when the total current density is 100 to 300 mA cm−2. More remarkably, the Cu1.0/N2-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under −1.18 V vs. RHE. In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N2 sites are more favorable in generating key *COOH and *CHO intermediate than Cu nanoparticle counterparts. This work provides an effective pathway to produce SACs with undercoordinated Metal-N2 sites toward efficient electrocatalysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含氮石墨二炔上的铜单原子电催化剂用于将 CO2 电还原为 CH4
开发具有明确活性位点的铜单原子催化剂(SAC),对于在电化学二氧化碳还原反应中生成 CH4 以及了解其结构-性能关系非常有帮助。本文合成了一种新的石墨二炔类似物,它具有均匀分布的 N2-二价(注意 N2-二价位点 = N^N-二价位点;在本文中 N2≠二氮气)位点。由于 Cu 与 N2 键合位点之间的相互作用很强,因此得到了一种具有孤立的欠配位 Cu-N2 位点的 Cu SAC(Cu1.0/N2-GDY),Cu 的负载量为 1.0 wt%。Cu1.0/N2-GDY 在 -0.96 V 对 RHE 的电压条件下,对 CH4 的电催化还原 CO2 的法拉第效率(FE)最高,达到 80.6%,CH4 的部分电流密度为 160 mA cm-2。当总电流密度为 100 至 300 mA cm-2 时,对 CH4 的选择性保持在 70% 以上。更显著的是,在 -1.18 V 对 RHE 条件下,Cu1.0/N2-GDY 对 CH4 的质量活度达到 53.2 A/mgCu。原位电化学光谱研究表明,欠配位的 Cu-N2 位点比对应的 Cu 纳米粒子更有利于生成关键的 *COOH 和 *CHO 中间体。这项工作为生产具有欠配位金属-N2 位点的 SACs 提供了有效途径,从而实现高效电催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Structural regulation strategies of nitrogen reduction electrocatalysts Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1