Ab initio informed solute drag assessment for ferritic steels

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-02 DOI:10.1016/j.commatsci.2024.113328
{"title":"Ab initio informed solute drag assessment for ferritic steels","authors":"","doi":"10.1016/j.commatsci.2024.113328","DOIUrl":null,"url":null,"abstract":"<div><p>Linking atomistic information on solute interactions with microstructure evolution is a key challenge for predictive modelling of chemistry effects on material properties. The objective of the present work is to provide a link between grain boundary segregation energies with GB migration kinetics on the example of recrystallization in multi-component ferritic steels. For that purpose, the segregation of 64 elements from the periodic table to a representative grain boundary is computed with ab initio density functional theory. To connect this data to grain boundary migration kinetics, the solute trend parameter from a simplified solute drag treatment is employed. The solute trend parameter for individual solutes is presented, which highlights solutes with large impact on grain boundary migration. Furthermore, an extension of the solute trend parameter is introduced that allows to evaluate the solute drag potential of realistic steel compositions. The necessity to include solute co-segregation, site competition, and precipitation effects is shown in a comparison to experimental data on recrystallization kinetics. The comparison to experimental data demonstrates the qualitative predictability of recrystallization kinetics by the extended solute trend parameter.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005494","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Linking atomistic information on solute interactions with microstructure evolution is a key challenge for predictive modelling of chemistry effects on material properties. The objective of the present work is to provide a link between grain boundary segregation energies with GB migration kinetics on the example of recrystallization in multi-component ferritic steels. For that purpose, the segregation of 64 elements from the periodic table to a representative grain boundary is computed with ab initio density functional theory. To connect this data to grain boundary migration kinetics, the solute trend parameter from a simplified solute drag treatment is employed. The solute trend parameter for individual solutes is presented, which highlights solutes with large impact on grain boundary migration. Furthermore, an extension of the solute trend parameter is introduced that allows to evaluate the solute drag potential of realistic steel compositions. The necessity to include solute co-segregation, site competition, and precipitation effects is shown in a comparison to experimental data on recrystallization kinetics. The comparison to experimental data demonstrates the qualitative predictability of recrystallization kinetics by the extended solute trend parameter.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁素体钢溶质阻力评估的 Ab initio 信息
将溶质相互作用的原子信息与微观结构演变联系起来,是化学效应对材料特性的预测建模所面临的关键挑战。本研究的目的是以多组分铁素体钢的再结晶为例,提供晶界偏析能与 GB 迁移动力学之间的联系。为此,采用原子序数密度泛函理论计算了元素周期表中 64 种元素在代表性晶界上的偏析。为了将这些数据与晶界迁移动力学联系起来,采用了简化溶质拖曳处理的溶质趋势参数。本文介绍了单个溶质的溶质趋势参数,突出了对晶界迁移影响较大的溶质。此外,还介绍了溶质趋势参数的扩展,可用于评估现实钢成分的溶质拖曳潜力。通过与再结晶动力学实验数据的比较,可以看出将溶质共析、位点竞争和沉淀效应包括在内的必要性。与实验数据的比较表明,扩展溶质趋势参数可对再结晶动力学进行定性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1