{"title":"Hybrid similarity based feature selection and cascade deep maxout fuzzy network for Autism Spectrum Disorder detection using EEG signal","authors":"Joy Karan Singh , Deepti Kakkar","doi":"10.1016/j.compbiolchem.2024.108177","DOIUrl":null,"url":null,"abstract":"<div><p>Autism Spectrum Disorder (ASD) is a neurological disorder that influences a person’s comprehension and way of behaving. It is a lifetime disability that cannot be completely treated using any therapy up to date. Nevertheless, in time identification and continuous therapies have a huge effect on autism patients. The existing models took a long time to confirm the diagnosis process and also, it is highly complex to differentiate autism from various developmental disorders. To facilitate early diagnosis by providing timely intervention, saving healthcare costs and reducing stress for the family in the long run, this research introduces an affordable and straightforward diagnostic model to detect ASD using EEG and deep learning models. Here, a hybrid deep learning model called Cascade deep maxout fuzzy network (Cascade DMFN) is proposed to identify ASD and it is achieved by the integration of Deep Maxout Network (DMN) and hybrid cascade neuro-fuzzy. Moreover, hybrid similarity measures like Canberra distance and Kumar-hassebrook is employed to conduct the feature selection technique. Also, the EEG dataset and BCIAUT_P300 dataset are used for analyzing the designed Cascade DMFN for detecting Autism Spectrum Disorder. The designed Cascade DMFN has outperformed other classical models by yielding a high accuracy of 0.930, Negative Predictive Value (NPV) of 0.919, Positive Predictive Value (PPV) of 0.923, True Negative Rate (TNR) of 0.926, and True Positive Rate (TPR) of 0.934.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108177"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001658","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autism Spectrum Disorder (ASD) is a neurological disorder that influences a person’s comprehension and way of behaving. It is a lifetime disability that cannot be completely treated using any therapy up to date. Nevertheless, in time identification and continuous therapies have a huge effect on autism patients. The existing models took a long time to confirm the diagnosis process and also, it is highly complex to differentiate autism from various developmental disorders. To facilitate early diagnosis by providing timely intervention, saving healthcare costs and reducing stress for the family in the long run, this research introduces an affordable and straightforward diagnostic model to detect ASD using EEG and deep learning models. Here, a hybrid deep learning model called Cascade deep maxout fuzzy network (Cascade DMFN) is proposed to identify ASD and it is achieved by the integration of Deep Maxout Network (DMN) and hybrid cascade neuro-fuzzy. Moreover, hybrid similarity measures like Canberra distance and Kumar-hassebrook is employed to conduct the feature selection technique. Also, the EEG dataset and BCIAUT_P300 dataset are used for analyzing the designed Cascade DMFN for detecting Autism Spectrum Disorder. The designed Cascade DMFN has outperformed other classical models by yielding a high accuracy of 0.930, Negative Predictive Value (NPV) of 0.919, Positive Predictive Value (PPV) of 0.923, True Negative Rate (TNR) of 0.926, and True Positive Rate (TPR) of 0.934.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.