Assessing novel analogues of nilutamide as a human androgen receptor antagonist: A detailed investigation of drug design using a bioisosteric methodology including ADMET profiling, molecular docking studies and molecular dynamics simulation
{"title":"Assessing novel analogues of nilutamide as a human androgen receptor antagonist: A detailed investigation of drug design using a bioisosteric methodology including ADMET profiling, molecular docking studies and molecular dynamics simulation","authors":"Ajay Kumar Gupta , Yogita Sahu , Dipti Pal , Neeraj Kumar , Sanmati Kumar Jain","doi":"10.1016/j.compbiolchem.2025.108424","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer is a significant health and economic concern worldwide. Prostate cancer (PC) ranks as the fourth leading cause of global death and is the second most prevalent malignancy in males. Androgens are essential for the progress and growth of the prostate gland. PC is caused by androgens binding to receptors, which activates genes that promotes the development of PC. Nilutamide (NLM) is an antiandrogen medicine used in the treatment of PC. However, throughout treatment, it induces various toxicities and leads to resistance in patients. The objective of the work was to designed and evaluated safer NLM analogues using computational approaches with optimized pharmacokinetic profiles and less toxicity. Newer bioisosteres of the designed NLM analogues and their ADMET scores were calculated using the MolOpt and ADMETlab 3.0 tools, respectively. We conducted docking investigations of the designed ligands using AutoDock Vina software. The MolOpt web server produces 1575 bioisosteres of NLM using the scaffold transformation method. The 47 bioisosteres were selected based on pharmacokinetic profiles, drug likeness (DL) and drug score (DS) prediction scores and were determined to be optimum to excellent in comparison to NLM. The analogues NLM28, NLM31, NLM34, NLM38, NLM40, NLM44, NLM45, and NLM47 exhibited favorable interactions and docking scores with the protein (PDB ID: 2AM9). The molecular dynamics (MD) simulation results revealed that the NLM34 and NLM40 complexes were found stable during the 100 ns run. The findings indicate that the NLM analogues, particularly NLM34 and NLM40 have the potential to be used as promising antiandrogen agents for PC therapy.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"117 ","pages":"Article 108424"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000842","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is a significant health and economic concern worldwide. Prostate cancer (PC) ranks as the fourth leading cause of global death and is the second most prevalent malignancy in males. Androgens are essential for the progress and growth of the prostate gland. PC is caused by androgens binding to receptors, which activates genes that promotes the development of PC. Nilutamide (NLM) is an antiandrogen medicine used in the treatment of PC. However, throughout treatment, it induces various toxicities and leads to resistance in patients. The objective of the work was to designed and evaluated safer NLM analogues using computational approaches with optimized pharmacokinetic profiles and less toxicity. Newer bioisosteres of the designed NLM analogues and their ADMET scores were calculated using the MolOpt and ADMETlab 3.0 tools, respectively. We conducted docking investigations of the designed ligands using AutoDock Vina software. The MolOpt web server produces 1575 bioisosteres of NLM using the scaffold transformation method. The 47 bioisosteres were selected based on pharmacokinetic profiles, drug likeness (DL) and drug score (DS) prediction scores and were determined to be optimum to excellent in comparison to NLM. The analogues NLM28, NLM31, NLM34, NLM38, NLM40, NLM44, NLM45, and NLM47 exhibited favorable interactions and docking scores with the protein (PDB ID: 2AM9). The molecular dynamics (MD) simulation results revealed that the NLM34 and NLM40 complexes were found stable during the 100 ns run. The findings indicate that the NLM analogues, particularly NLM34 and NLM40 have the potential to be used as promising antiandrogen agents for PC therapy.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.