{"title":"Effect of organic solvent additives on the enhancement of ultrasonic cavitation effects in water for lithium-ion battery electrode delamination","authors":"","doi":"10.1016/j.ultsonch.2024.107049","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic delamination is a low energy approach for direct recycling of spent lithium-ion batteries. The efficiency of the ultrasonic delamination relies both on the thermophysical properties (such as viscosity, surface tension, and vapour pressure) of the solvent in which the delamination process is carried out, and the properties of the ultrasound source as well as the geometry of the containment vessel. However, the effect of tailoring solutions to optimise cavitation and delamination of battery cathode coatings has not yet been sufficiently investigated. Acoustic detection, high-speed imaging, and sonochemiluminescence (SCL) are employed to study the cavitation processes in water-glycol systems and identify the effect of tailoring solvent composition on cavitation strength. The addition of small volume fractions of organic solvent (ca. 10–30 vol%), including ethylene glycol or glycerol, to the aqueous delamination solution were found to significantly improve the delamination efficiency of lithium-ion battery cathode coatings due to the alteration of these thermophysical properties. However, greater volume fractions of glycol decrease delamination efficiency due to the signal-dampening effect of viscosity on the ultrasonic waves. The findings of this study offer valuable insights for optimising ultrasonic bath solution composition to enhance film delamination processes.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002979/pdfft?md5=ad2f058d7eb3cf51a06bbafd097437b1&pid=1-s2.0-S1350417724002979-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002979","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic delamination is a low energy approach for direct recycling of spent lithium-ion batteries. The efficiency of the ultrasonic delamination relies both on the thermophysical properties (such as viscosity, surface tension, and vapour pressure) of the solvent in which the delamination process is carried out, and the properties of the ultrasound source as well as the geometry of the containment vessel. However, the effect of tailoring solutions to optimise cavitation and delamination of battery cathode coatings has not yet been sufficiently investigated. Acoustic detection, high-speed imaging, and sonochemiluminescence (SCL) are employed to study the cavitation processes in water-glycol systems and identify the effect of tailoring solvent composition on cavitation strength. The addition of small volume fractions of organic solvent (ca. 10–30 vol%), including ethylene glycol or glycerol, to the aqueous delamination solution were found to significantly improve the delamination efficiency of lithium-ion battery cathode coatings due to the alteration of these thermophysical properties. However, greater volume fractions of glycol decrease delamination efficiency due to the signal-dampening effect of viscosity on the ultrasonic waves. The findings of this study offer valuable insights for optimising ultrasonic bath solution composition to enhance film delamination processes.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.