{"title":"Effects of dimethoxymethane and isopropanol blending on soot formation in ethylene and propane counterflow diffusion flames","authors":"","doi":"10.1016/j.joei.2024.101805","DOIUrl":null,"url":null,"abstract":"<div><p>Introducing low-carbon oxygenated fuels into the current transport sector provides an effective pathway for mitigating the emissions of greenhouse gases and harmful pollutants such as soot. Previous studies have revealed that oxygenated fuels can reduce soot formation, but the soot-reduction potential is closely related to the chemical interaction between the oxygenates and the baseline hydrocarbons. This work is devoted to study the effects of blending dimethoxymethane (DMM) and isopropanol (IPA) on soot formation in ethylene-based and propane-based counterflow diffusion flames. Soot formation in the target flames was experimentally characterized using a planar light extinction technique, accompanied by numerical analysis to provide complementary insights. The results confirmed that the effects of blending oxygenates on soot formation are sensitive to the fuel-specific molecular structure of the oxygenates and hydrocarbons. For the C<sub>2</sub>H<sub>4</sub>-based flames, blending DMM and IPA could lead to a synergistic effect on soot formation due to chemical fuel interaction, with stronger synergy observed with IPA blending. In contrast, no evident synergistic effects on soot formation were observed in the C<sub>3</sub>H<sub>8</sub>-based flames, for which a notable soot reduction was observed with DMM blending. Reaction pathway analysis suggested that the occurrence of soot synergy in the C<sub>2</sub>H<sub>4</sub>-based flames is mainly due to the chemical interaction between the methyl radicals generated from DMM/IPA and the C<sub>2</sub> species from C<sub>2</sub>H<sub>4</sub>. This study is expected to deepen our understanding of the soot formation behavior of DMM- and IPA-blended flames, thus contributing to their successful usage as clean alternative fuels.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002836","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Introducing low-carbon oxygenated fuels into the current transport sector provides an effective pathway for mitigating the emissions of greenhouse gases and harmful pollutants such as soot. Previous studies have revealed that oxygenated fuels can reduce soot formation, but the soot-reduction potential is closely related to the chemical interaction between the oxygenates and the baseline hydrocarbons. This work is devoted to study the effects of blending dimethoxymethane (DMM) and isopropanol (IPA) on soot formation in ethylene-based and propane-based counterflow diffusion flames. Soot formation in the target flames was experimentally characterized using a planar light extinction technique, accompanied by numerical analysis to provide complementary insights. The results confirmed that the effects of blending oxygenates on soot formation are sensitive to the fuel-specific molecular structure of the oxygenates and hydrocarbons. For the C2H4-based flames, blending DMM and IPA could lead to a synergistic effect on soot formation due to chemical fuel interaction, with stronger synergy observed with IPA blending. In contrast, no evident synergistic effects on soot formation were observed in the C3H8-based flames, for which a notable soot reduction was observed with DMM blending. Reaction pathway analysis suggested that the occurrence of soot synergy in the C2H4-based flames is mainly due to the chemical interaction between the methyl radicals generated from DMM/IPA and the C2 species from C2H4. This study is expected to deepen our understanding of the soot formation behavior of DMM- and IPA-blended flames, thus contributing to their successful usage as clean alternative fuels.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.