Olivia Pabois, Yihui Dong, Nir Kampf, Christian D. Lorenz, James Doutch, Alejandro Avila-Sierra, Marco Ramaioli, Mingduo Mu, Yasmin Message, Evangelos Liamas, Arwen I. I. Tyler, Jacob Klein, Anwesha Sarkar
{"title":"Self-assembly of sustainable plant protein protofilaments into a hydrogel for ultra-low friction across length scales","authors":"Olivia Pabois, Yihui Dong, Nir Kampf, Christian D. Lorenz, James Doutch, Alejandro Avila-Sierra, Marco Ramaioli, Mingduo Mu, Yasmin Message, Evangelos Liamas, Arwen I. I. Tyler, Jacob Klein, Anwesha Sarkar","doi":"10.1038/s43246-024-00590-5","DOIUrl":null,"url":null,"abstract":"Designing plant protein-based aqueous lubricants can be of great potential to achieve sustainability objectives by capitalising on inherent functional groups without using synthetic chemicals; however, such a concept remains in its infancy. Here, we engineer a class of self-assembled sustainable materials by using plant-based protofilaments and their assembly within a biopolymeric hydrogel giving rise to a distinct patchy architecture. By leveraging physical interactions, this material offers superlubricity with friction coefficients of 0.004-to-0.00007 achieved under moderate-to-high (102-to-103 kPa) contact pressures. Multiscale experimental measurements combined with molecular dynamics simulations reveal an intriguing synergistic mechanism behind such ultra-low friction - where the uncoated areas of the protofilaments glue to the surface by hydrophobic interactions, whilst the hydrogel offers the hydration lubrication. The current approach establishes a robust platform towards unlocking an untapped potential of using plant protein-based building blocks across diverse applications where achieving superlubricity and environmental sustainability are key performance indicators. Superlubricity is important for energy and biomedical applications but typical building blocks are limited to synthetically-sourced polymeric materials. Here, self-assembly of plant-based protofilaments in biopolymeric hydrogels were engineered offering superlubricity performance.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00590-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00590-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing plant protein-based aqueous lubricants can be of great potential to achieve sustainability objectives by capitalising on inherent functional groups without using synthetic chemicals; however, such a concept remains in its infancy. Here, we engineer a class of self-assembled sustainable materials by using plant-based protofilaments and their assembly within a biopolymeric hydrogel giving rise to a distinct patchy architecture. By leveraging physical interactions, this material offers superlubricity with friction coefficients of 0.004-to-0.00007 achieved under moderate-to-high (102-to-103 kPa) contact pressures. Multiscale experimental measurements combined with molecular dynamics simulations reveal an intriguing synergistic mechanism behind such ultra-low friction - where the uncoated areas of the protofilaments glue to the surface by hydrophobic interactions, whilst the hydrogel offers the hydration lubrication. The current approach establishes a robust platform towards unlocking an untapped potential of using plant protein-based building blocks across diverse applications where achieving superlubricity and environmental sustainability are key performance indicators. Superlubricity is important for energy and biomedical applications but typical building blocks are limited to synthetically-sourced polymeric materials. Here, self-assembly of plant-based protofilaments in biopolymeric hydrogels were engineered offering superlubricity performance.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.