N/O Co-doped Porous Carbon with Controllable Porosity Synthesized via an All-in-One Step Method for a High-Rate-Performance Supercapacitor.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-09-17 Epub Date: 2024-09-04 DOI:10.1021/acs.langmuir.4c02328
Chenweijia He, Guangjie Yang, Liye Ni, Haoqi Yang, Yongshuo Peng, Xiangdong Liu, Ping Li, Cheng Song, Shuijian He, Qian Zhang
{"title":"N/O Co-doped Porous Carbon with Controllable Porosity Synthesized via an All-in-One Step Method for a High-Rate-Performance Supercapacitor.","authors":"Chenweijia He, Guangjie Yang, Liye Ni, Haoqi Yang, Yongshuo Peng, Xiangdong Liu, Ping Li, Cheng Song, Shuijian He, Qian Zhang","doi":"10.1021/acs.langmuir.4c02328","DOIUrl":null,"url":null,"abstract":"<p><p>A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining <i>in situ</i> templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (K<i>x</i>) have a high specific surface area (1021-1676 m<sup>2</sup> g<sup>-1</sup>) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g<sup>-1</sup> at 0.1 A g<sup>-1</sup>. It still retained 113 F g<sup>-1</sup> at 55 A g<sup>-1</sup>. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100 000 cycles at 10 A g<sup>-1</sup>. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg<sup>-1</sup>. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02328","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining in situ templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (Kx) have a high specific surface area (1021-1676 m2 g-1) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g-1 at 0.1 A g-1. It still retained 113 F g-1 at 55 A g-1. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100 000 cycles at 10 A g-1. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg-1. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过一步到位法合成具有可控孔隙率的 N/O Co 掺杂多孔碳,用于制造高能效超级电容器。
要实现电解质的快速扩散并提高超级电容器的性能,需要一种绿色、经济的方法来制造具有合适孔径分布的碳基材料。本文提出了一种将原位模板与自激活和自掺杂相结合的方法。通过改变叶酸镁和叶酸钾的摩尔比,有效地调整了孔径分布。最佳碳材料(Kx)具有高比表面积(1021-1676 m2 g-1)和分层孔隙结构,这极大地促进了其优异的电容特性。值得注意的是,K2 在 0.1 A g-1 时显示出 233 F g-1 的出色质量比电容。在 55 A g-1 时,它仍能保持 113 F g-1。组装好的对称超级电容器具有出色的循环稳定性。在 10 A g-1 条件下循环 100 000 次后,它仍能保持 100% 的电容。对称超级电容器的最大功率密度为 99.8 kW kg-1。这项研究的重点是分层孔隙结构的制备,为碳材料的可持续设计提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
In Situ Synthesis and Visualization of Membrane SNAP25 Nano-Organization Revealing the Interlayer Interaction Forces in 2D Graphene Materials by Graphene-Wrapped Nanoprobe Ultrahydrophilic Inorganic Nanosheet-Based Nanofiltration Membranes for High Efficiency Separations of Inorganic Salts and Organic Dyes Atomic Erosion Behavior and Influence Mechanism of (CoCrFeMn)1–xNix High-Entropy Alloy Coating on Fracturing Pump Valves During Stimulation Operation Durability Properties of Steel Textiles and Bonding Properties at the Interface of Steel Textiles with Reinforced Mortar-Reinforced Concrete Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1