Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy

IF 5.4 2区 医学 Q1 NEUROSCIENCES Glia Pub Date : 2024-09-03 DOI:10.1002/glia.24612
Anastasia Schultz, Henar Albertos-Arranz, Xavier Sánchez Sáez, Jamie Morgan, Diane C. Darland, Alejandra Gonzalez-Duarte, Horacio Kaufmann, Carlos E. Mendoza-Santiesteban, Nicolás Cuenca, Frances Lefcort
{"title":"Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy","authors":"Anastasia Schultz,&nbsp;Henar Albertos-Arranz,&nbsp;Xavier Sánchez Sáez,&nbsp;Jamie Morgan,&nbsp;Diane C. Darland,&nbsp;Alejandra Gonzalez-Duarte,&nbsp;Horacio Kaufmann,&nbsp;Carlos E. Mendoza-Santiesteban,&nbsp;Nicolás Cuenca,&nbsp;Frances Lefcort","doi":"10.1002/glia.24612","DOIUrl":null,"url":null,"abstract":"<p>Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, <i>Pax6-cre;Elp1</i><sup><i>loxp/loxp</i></sup> male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 12","pages":"2268-2294"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24612","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.24612","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
家族性自主神经功能障碍视神经病变视网膜变性所涉及的神经元和神经胶质细胞的改变。
家族性自律神经失调症(FD)是一种罕见的遗传性神经发育和神经退行性疾病。除了自主神经和外周感觉神经病变给患者的生存带来挑战外,影响患者生活质量的最令人衰弱的症状之一是视网膜神经节细胞(RGC)的不断丧失导致的渐进性失明。视网膜脱失症患者正在共同努力开发治疗方法,以防止视网膜神经节细胞的丧失。然而,人们对RGC死亡的机制还不甚了解。为了研究RGC死亡的机制,研究人员利用Pax6-cre;Elp1loxp/loxp雄性和雌性小鼠以及一名FD患者的死后视网膜组织来探讨与FD视神经病变相关的神经元和非神经元细胞病理学。我们采用多种组织学分析方法对神经元、星形胶质细胞、小胶质细胞、Müller胶质细胞和内皮细胞进行了研究。我们在 FD 视网膜中发现了一种新的细胞平衡紊乱和胶质增生现象。从出生后不久开始,随着年龄的增长,FD 视网膜出现星形胶质细胞增多和小胶质细胞紊乱,这与血管重塑同时发生。这些变化开始于 RGC 开始死亡之前,表明视网膜神经血管单元的改变可能导致并加剧 RGC 的死亡。我们首次揭示了FD视网膜病理学包括反应性胶质细胞增多、神经节细胞层(GCL)的小胶质细胞招募增加、深层和浅层血管丛的破坏以及信号通路的改变。这些研究表明,神经血管单元是 FD 治疗干预的疾病调节靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
期刊最新文献
Modulation of OPC Mitochondrial Function by Inhibiting USP30 Promotes Their Differentiation. Unboxing "Omics" in Glial Biology to Understand Neurological Disease. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Astrocytic GAT-3 Regulates Synaptic Transmission and Memory Formation in the Dentate Gyrus. All the single cells: Single-cell transcriptomics/epigenomics experimental design and analysis considerations for glial biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1