Facile Determination of Aluminum Content in Industrial Brine by Investigating the Effects of Buffer Systems.

IF 2.5 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemistryOpen Pub Date : 2024-09-03 DOI:10.1002/open.202400038
Benjámin Csorba, László Farkas, Marcell Csécsi, László T Mika, Iván L Gresits
{"title":"Facile Determination of Aluminum Content in Industrial Brine by Investigating the Effects of Buffer Systems.","authors":"Benjámin Csorba, László Farkas, Marcell Csécsi, László T Mika, Iván L Gresits","doi":"10.1002/open.202400038","DOIUrl":null,"url":null,"abstract":"<p><p>The aluminum content of concentrated (27 wt%) sodium chloride solutions could be crucial for large-scale chlor-alkali-based industries applying membrane cell electrolysis. Thus, a facile method which enables a fast and reliable protocol to determine the Al content of these solutions on ppb scale in industrial environments is fundamentally important. It was demonstrated that the increased sensitivity of colorful Al-ECR (eriochrome cyanine R) complex by the use of a cationic surfactant and specific biological buffers could effectively indicate the Al content in an extended pH interval of a concentrated saline medium under industrial conditions. The dependence of the analytical protocol on pH, temperature, time, wavelength, and the salinity of the medium was investigated. It was shown that the absorbance-based measurements of the solution should be performed at least 2-4 h after its preparation. By applying the selected two Good's buffers (HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, MOPS: 3-(N-morpholino)-propanesulfonic acid) and Tris (tris(hydroxymethyl)aminomethane), 32.8-38.1 % increase in the sensitivity was achieved for saturated NaCl solutions. Moreover, the limits of detection and quantification (LOD, LOQ) were also lowered by 19.0-29.8 %, and the salinity dependence of the calibration was also reduced.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400038"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400038","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aluminum content of concentrated (27 wt%) sodium chloride solutions could be crucial for large-scale chlor-alkali-based industries applying membrane cell electrolysis. Thus, a facile method which enables a fast and reliable protocol to determine the Al content of these solutions on ppb scale in industrial environments is fundamentally important. It was demonstrated that the increased sensitivity of colorful Al-ECR (eriochrome cyanine R) complex by the use of a cationic surfactant and specific biological buffers could effectively indicate the Al content in an extended pH interval of a concentrated saline medium under industrial conditions. The dependence of the analytical protocol on pH, temperature, time, wavelength, and the salinity of the medium was investigated. It was shown that the absorbance-based measurements of the solution should be performed at least 2-4 h after its preparation. By applying the selected two Good's buffers (HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, MOPS: 3-(N-morpholino)-propanesulfonic acid) and Tris (tris(hydroxymethyl)aminomethane), 32.8-38.1 % increase in the sensitivity was achieved for saturated NaCl solutions. Moreover, the limits of detection and quantification (LOD, LOQ) were also lowered by 19.0-29.8 %, and the salinity dependence of the calibration was also reduced.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过研究缓冲体系的影响,轻松测定工业盐水中的铝含量。
高浓度(27 wt%)氯化钠溶液中的铝含量对于采用膜电池电解法的大规模氯碱工业至关重要。因此,在工业环境中采用一种简便的方法,快速可靠地测定这些溶液中 ppb 级的铝含量至关重要。研究表明,通过使用阳离子表面活性剂和特定的生物缓冲剂来提高彩色 Al-ECR(麦角色青 R)复合物的灵敏度,可以有效地显示工业条件下浓盐水介质中扩展 pH 值区间内的铝含量。研究了分析方案对 pH 值、温度、时间、波长和介质盐度的依赖性。结果表明,基于吸光度的溶液测量至少应在溶液制备 2-4 小时后进行。通过使用选定的两种 Good 缓冲液(HEPES:4-(2-羟乙基)-1-哌嗪乙磺酸;MOPS:3-(N-吗啉基)-丙磺酸)和 Tris(三羟甲基氨基甲烷),饱和 NaCl 溶液的灵敏度提高了 32.8%-38.1%。此外,检测限和定量限(LOD、LOQ)也降低了 19.0-29.8%,校准的盐度依赖性也降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistryOpen
ChemistryOpen CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
4.30%
发文量
143
审稿时长
1 months
期刊介绍: ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.
期刊最新文献
Antibacterial and Anti-Inflammatory Activity of Chitosan Film with Rhodomyrtus Tomentosa Leaf Extract Prepared Via 3D-Printing Method. Impact of N-Doping on MoSe2 Monolayer for PH3, C2N2, and HN3 Gas Sensing: A DFT Study. Putative Identification of 47 Compounds from Jieyu Anshen Granule and Proposal of Pharmacopeia Quality-Assessment Strategy Using TCM-Specific Library with UHPLC-Q-Exactive-Orbitrap-MS. Synthesis and Structural Characterization of SiO2 Nanoparticles Using Extract of Gracilaria Crassa Via Green Chemistry Approach. Exploring the Electronic Interactions of Adenine, Cytosine, and Guanine with Graphene: A DFT Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1