Paul A. O'Brien, Steven J. Robbins, Shangjin Tan, Laura Rix, David J. Miller, Nicole S. Webster, Guojie Zhang, David G. Bourne
{"title":"Comparative genomics identifies key adaptive traits of sponge-associated microbial symbionts","authors":"Paul A. O'Brien, Steven J. Robbins, Shangjin Tan, Laura Rix, David J. Miller, Nicole S. Webster, Guojie Zhang, David G. Bourne","doi":"10.1111/1462-2920.16690","DOIUrl":null,"url":null,"abstract":"<p>Sponge microbiomes are often highly diverse making it difficult to determine which lineages are important for maintaining host health and homeostasis. Characterising genomic traits associated with symbiosis can improve our knowledge of which lineages have adapted to their host and what functions they might provide. Here we examined five microbial families associated with sponges that have previously shown evidence of cophylogeny, including <i>Endozoicomonadaceae, Nitrosopumilaceae, Spirochaetaceae, Microtrichaceae</i> and <i>Thermoanaerobaculaceae</i>, to better understand the mechanisms behind their symbiosis. We compared sponge-associated genomes to genomes found in other environments and found that sponge-specific clades were enriched in genes encoding many known mechanisms for symbiont survival, such as avoiding phagocytosis and defence against foreign genetic elements. We expand on previous knowledge to show that glycosyl hydrolases with sulfatases and sulfotransferases likely form multienzyme degradation pathways to break and remodel sulfated polysaccharides and reveal an enrichment in superoxide dismutase that may prevent damage from free oxygen radicals produced by the host. Finally, we identified novel traits in sponge-associated symbionts, such as urea metabolism in <i>Spirochaetaceae</i> which was previously shown to be rare in the phylum Spirochaetota. These results identify putative mechanisms by which symbionts have adapted to living in association with sponges.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16690","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16690","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sponge microbiomes are often highly diverse making it difficult to determine which lineages are important for maintaining host health and homeostasis. Characterising genomic traits associated with symbiosis can improve our knowledge of which lineages have adapted to their host and what functions they might provide. Here we examined five microbial families associated with sponges that have previously shown evidence of cophylogeny, including Endozoicomonadaceae, Nitrosopumilaceae, Spirochaetaceae, Microtrichaceae and Thermoanaerobaculaceae, to better understand the mechanisms behind their symbiosis. We compared sponge-associated genomes to genomes found in other environments and found that sponge-specific clades were enriched in genes encoding many known mechanisms for symbiont survival, such as avoiding phagocytosis and defence against foreign genetic elements. We expand on previous knowledge to show that glycosyl hydrolases with sulfatases and sulfotransferases likely form multienzyme degradation pathways to break and remodel sulfated polysaccharides and reveal an enrichment in superoxide dismutase that may prevent damage from free oxygen radicals produced by the host. Finally, we identified novel traits in sponge-associated symbionts, such as urea metabolism in Spirochaetaceae which was previously shown to be rare in the phylum Spirochaetota. These results identify putative mechanisms by which symbionts have adapted to living in association with sponges.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens