{"title":"Dual-functional application of Ca<sub>2</sub>Ta<sub>2</sub>O<sub>7</sub>:Bi<sup>3+</sup>/Eu<sup>3+</sup> phosphors in multicolor tunable optical thermometry and WLED.","authors":"Jingjing Ru, Bing Zhao, Fan Zeng, Feiyun Guo, Jinhua Liu, Jianzhong Chen","doi":"10.1007/s12200-024-00134-2","DOIUrl":null,"url":null,"abstract":"<p><p>A series of Bi<sup>3+</sup>/Eu<sup>3+</sup> co-doped Ca<sub>2</sub>Ta<sub>2</sub>O<sub>7</sub> (CTO:Bi<sup>3+</sup>/Eu<sup>3+</sup>) phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode (WLED) device. By modulating the doping ratio of Bi<sup>3+</sup>/Eu<sup>3+</sup> and utilizing the energy transfer from Bi<sup>3+</sup> to Eu<sup>3+</sup>, the tunable color emission ranging from green to reddish-orange was realized. The designed CTO:0.04Bi<sup>3+</sup>/Eu<sup>3+</sup> optical thermometers exhibit significant thermochromism, superior stability, and repeatability, with maximum sensitivities of S<sub>a</sub> = 0.055 K<sup>-1</sup> (at 510 K) and S<sub>r</sub> = 1.298% K<sup>-1</sup> (at 480 K) within the temperature range of 300-510 K, owing to the different thermal quenching behaviors between Bi<sup>3+</sup> and Eu<sup>3+</sup> ions. These features indicate the potential application prospects of the prepared samples in visualized thermometer or high-temperature safety marking. Furthermore, leveraging the excellent zero-thermal-quenching performance, outstanding acid/alkali resistance, and color stability of CTO:0.04Bi<sup>3+</sup>/0.16Eu<sup>3+</sup> phosphor, a WLED device with a high R<sub>a</sub> value of 95.3 has been realized through its combination with commercially available blue and green phosphors, thereby demonstrating the potential application of CTO:0.04Bi<sup>3+</sup>/0.16Eu<sup>3+</sup> in near-UV pumped WLED devices.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00134-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A series of Bi3+/Eu3+ co-doped Ca2Ta2O7 (CTO:Bi3+/Eu3+) phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode (WLED) device. By modulating the doping ratio of Bi3+/Eu3+ and utilizing the energy transfer from Bi3+ to Eu3+, the tunable color emission ranging from green to reddish-orange was realized. The designed CTO:0.04Bi3+/Eu3+ optical thermometers exhibit significant thermochromism, superior stability, and repeatability, with maximum sensitivities of Sa = 0.055 K-1 (at 510 K) and Sr = 1.298% K-1 (at 480 K) within the temperature range of 300-510 K, owing to the different thermal quenching behaviors between Bi3+ and Eu3+ ions. These features indicate the potential application prospects of the prepared samples in visualized thermometer or high-temperature safety marking. Furthermore, leveraging the excellent zero-thermal-quenching performance, outstanding acid/alkali resistance, and color stability of CTO:0.04Bi3+/0.16Eu3+ phosphor, a WLED device with a high Ra value of 95.3 has been realized through its combination with commercially available blue and green phosphors, thereby demonstrating the potential application of CTO:0.04Bi3+/0.16Eu3+ in near-UV pumped WLED devices.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more