Mitochondrial Variation in Anopheles gambiae and Anopheles coluzzii: Phylogeographic Legacy and Mitonuclear Associations With Metabolic Resistance to Pathogens and Insecticides.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2024-09-03 DOI:10.1093/gbe/evae172
Jorge E Amaya Romero, Clothilde Chenal, Yacine Ben Chehida, Alistair Miles, Chris S Clarkson, Vincent Pedergnana, Bregje Wertheim, Michael C Fontaine
{"title":"Mitochondrial Variation in Anopheles gambiae and Anopheles coluzzii: Phylogeographic Legacy and Mitonuclear Associations With Metabolic Resistance to Pathogens and Insecticides.","authors":"Jorge E Amaya Romero, Clothilde Chenal, Yacine Ben Chehida, Alistair Miles, Chris S Clarkson, Vincent Pedergnana, Bregje Wertheim, Michael C Fontaine","doi":"10.1093/gbe/evae172","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African \"far-west\" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"16 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae172","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African "far-west" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冈比亚按蚊和科鲁兹按蚊的线粒体变异:系统地理学遗产和线粒体核与病原体和杀虫剂代谢抗性的关联。
线粒体DNA一直是系统地理学、系统发生学和分子生态学中常用的标记,但其复杂的进化过程也日益受到重视。在这里,我们通过组装非洲 1,219 只蚊子的有丝分裂基因组,研究了冈比亚按蚊和 coluzzii 按蚊的线粒体 DNA 变异与冈比亚按蚊复合体中其他物种的关系。冈比亚按蚊复合体的线粒体 DNA 系统发生与之前报道的高度网状进化史一致,揭示了与物种树的重要不一致。根据有丝分裂基因组,无法区分三个最广泛分布的物种(冈比亚按蚊、科鲁齐按蚊和阿拉伯按蚊),而这三个物种在历史上曾有过广泛的引入。此外,冈比亚按蚊复合体中三个耐盐水的物种(梅花按蚊、梅拉斯按蚊和布瓦姆巴按蚊)的单系聚类也表明,引种和可能的选择影响了线粒体 DNA 的进化。非洲冈比亚按蚊和 coluzzii 按蚊的线粒体 DNA 变异表明,种群和物种之间存在明显的分化。在非洲 "最西部 "的冈比亚疟蚊和杂交类群中发现了一个奇特的线粒体DNA系,其分化程度与冈比亚疟蚊种间分化程度相当,其地理分布与冈比亚疟蚊的地理分布密切相关。这一科鲁兹疟蚊和冈比亚疟蚊分裂的系统地理学孑遗与种群和物种结构有关,但与罕见的沃尔巴奇发生无关。该品系与核基因组中的单核苷酸多态性,尤其是与病原体和杀虫剂抗性相关的基因有很大关系。这些发现强调了潜在的有丝分裂核共同进化史,以及线粒体在塑造按蚊对病原体和杀虫剂的代谢反应中所扮演的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Convergent evolution associated with the loss of developmental diapause may promote extended lifespan in bees. De Novo Long-Read Genome Assembly and Annotation of the Mosquito Gut-dwelling Fungus, Smittium minutisporum. TIdeS: a comprehensive framework for accurate open reading frame identification and classification in eukaryotic transcriptomes. Transcriptomic sexual conflict at two evolutionary timescales revealed by experimental evolution in Caenorhabditis elegans. Genome streamlining: effect of mutation rate and population size on genome size reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1