Carmen C G Allen, David Díaz-Escandón, Sarah DeLong-Duhon, Gulnara Tagirdzhanova, Alejandro Huereca, Shauna Reckseidler-Zenteno, Andrew Forbes, Toby Spribille
Fungi are well known for their ability to both produce and catabolize complex carbohydrates to acquire carbon, often in the most extreme of environments. Glucuronoxylomannan (GXM)-based gel matrices are widely produced by fungi in nature and though they are of key interest in medicine and pharmaceuticals, their biodegradation is poorly understood. Though some organisms, including other fungi, are adapted to life in and on GXM-like matrices in nature, they are almost entirely unstudied, and it is unknown if they are involved in matrix degradation. Sporothrix epigloea is an ascomycete fungus that completes its life cycle entirely in the short-lived secreted polysaccharide matrix of a white jelly fungus, Tremella fuciformis. To gain insight into how S. epigloea adapted to life in this unusual microhabitat, we compared the predicted protein composition of S. epigloea to that of 21 other Sporothrix species. We found that the genome of S. epigloea is smaller than that of any other sampled Sporothrix, with widespread functional gene loss, including those coding for serine proteases and biotin synthesis. In addition, many predicted CAZymes degrading both plant and fungal cell wall components were lost while a lytic polysaccharide monooxygenase (LPMO) with no previously established activity or substrate specificity, appears to have been gained. Phenotype assays suggest narrow use of mannans and other oligosaccharides as carbon sources. Taken together, the results suggest a streamlined machinery, including potential carbon sourcing from GXM building blocks, facilitates the hyperspecialized ecology of S. epigloea in the GXM-like milieu.
{"title":"Massive gene loss in the fungus Sporothrix epigloea accompanied a shift to life in a glucuronoxylomannan-based gel matrix.","authors":"Carmen C G Allen, David Díaz-Escandón, Sarah DeLong-Duhon, Gulnara Tagirdzhanova, Alejandro Huereca, Shauna Reckseidler-Zenteno, Andrew Forbes, Toby Spribille","doi":"10.1093/gbe/evaf015","DOIUrl":"https://doi.org/10.1093/gbe/evaf015","url":null,"abstract":"<p><p>Fungi are well known for their ability to both produce and catabolize complex carbohydrates to acquire carbon, often in the most extreme of environments. Glucuronoxylomannan (GXM)-based gel matrices are widely produced by fungi in nature and though they are of key interest in medicine and pharmaceuticals, their biodegradation is poorly understood. Though some organisms, including other fungi, are adapted to life in and on GXM-like matrices in nature, they are almost entirely unstudied, and it is unknown if they are involved in matrix degradation. Sporothrix epigloea is an ascomycete fungus that completes its life cycle entirely in the short-lived secreted polysaccharide matrix of a white jelly fungus, Tremella fuciformis. To gain insight into how S. epigloea adapted to life in this unusual microhabitat, we compared the predicted protein composition of S. epigloea to that of 21 other Sporothrix species. We found that the genome of S. epigloea is smaller than that of any other sampled Sporothrix, with widespread functional gene loss, including those coding for serine proteases and biotin synthesis. In addition, many predicted CAZymes degrading both plant and fungal cell wall components were lost while a lytic polysaccharide monooxygenase (LPMO) with no previously established activity or substrate specificity, appears to have been gained. Phenotype assays suggest narrow use of mannans and other oligosaccharides as carbon sources. Taken together, the results suggest a streamlined machinery, including potential carbon sourcing from GXM building blocks, facilitates the hyperspecialized ecology of S. epigloea in the GXM-like milieu.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul M Sharp, Frederic Bibollet-Ruche, Beatrice H Hahn
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P. falciparum cysteine-rich protective antigen (PfCyRPA) binds human sialoglycans as an essential step in the erythrocyte invasion pathway, while that of the chimpanzee parasite Plasmodium reichenowi has affinities matching ape glycans. Two amino acid changes, at sites 154 and 209, were shown to be sufficient to switch glycan binding preferences and inferred to reflect adaptation of P. falciparum to humans. However, we show that sites 154 and 209 are identical in P. falciparum and P. praefalciparum, with no other differences located in or near the CyRPA glycan binding sites. Thus, the gorilla precursor appears to have already been preadapted to bind human sialoglycans.
{"title":"Plasmodium falciparum CyRPA glycan binding does not explain adaptation to humans.","authors":"Paul M Sharp, Frederic Bibollet-Ruche, Beatrice H Hahn","doi":"10.1093/gbe/evaf016","DOIUrl":"https://doi.org/10.1093/gbe/evaf016","url":null,"abstract":"<p><p>The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P. falciparum cysteine-rich protective antigen (PfCyRPA) binds human sialoglycans as an essential step in the erythrocyte invasion pathway, while that of the chimpanzee parasite Plasmodium reichenowi has affinities matching ape glycans. Two amino acid changes, at sites 154 and 209, were shown to be sufficient to switch glycan binding preferences and inferred to reflect adaptation of P. falciparum to humans. However, we show that sites 154 and 209 are identical in P. falciparum and P. praefalciparum, with no other differences located in or near the CyRPA glycan binding sites. Thus, the gorilla precursor appears to have already been preadapted to bind human sialoglycans.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John M Lemas, Eric L Patterson, Luan Cutti, Sarah Morran, Nicholas A Johnson, Jacob Montgomery, Fatemeh Abdollahi, David R Nelson, Victor Llaca, Kevin Fengler, Philip Westra, Todd A Gaines
This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp. PacBio HiFi reads were assembled and scaffolded with Hi-C chromatin contact mapping and Bionano optical mapping data. For annotation, a PacBio Iso-Seq library was generated from root, stem, leaf, and floral tissues followed by annotation using a modified Maker pipeline. The assembled haploid S. tragus genomes contained 18 chromosomes each, with 9 chromosomes assigned to subgenome A and 9 chromosomes to subgenome B. Each haplome assembly represented 95% of the total flow cytometry estimated genome size. Haplome 1 and haplome 2 contained 43,354 and 42,221 annotated genes, respectively. The availability of high-quality reference genomes for this economically important weed will facilitate future omics analysis of S. tragus and a better understanding of chenopod plants.
{"title":"Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome.","authors":"John M Lemas, Eric L Patterson, Luan Cutti, Sarah Morran, Nicholas A Johnson, Jacob Montgomery, Fatemeh Abdollahi, David R Nelson, Victor Llaca, Kevin Fengler, Philip Westra, Todd A Gaines","doi":"10.1093/gbe/evaf014","DOIUrl":"https://doi.org/10.1093/gbe/evaf014","url":null,"abstract":"<p><p>This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp. PacBio HiFi reads were assembled and scaffolded with Hi-C chromatin contact mapping and Bionano optical mapping data. For annotation, a PacBio Iso-Seq library was generated from root, stem, leaf, and floral tissues followed by annotation using a modified Maker pipeline. The assembled haploid S. tragus genomes contained 18 chromosomes each, with 9 chromosomes assigned to subgenome A and 9 chromosomes to subgenome B. Each haplome assembly represented 95% of the total flow cytometry estimated genome size. Haplome 1 and haplome 2 contained 43,354 and 42,221 annotated genes, respectively. The availability of high-quality reference genomes for this economically important weed will facilitate future omics analysis of S. tragus and a better understanding of chenopod plants.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143038063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking. We performed a comprehensive and accurate detection of HGT candidates in B. tabaci and identified 136 HGT events, 14 of which corresponding to CAZymes. The B. tabaci HGT-acquired CAZymes were not only of bacterial or fungal origin, but some were also acquired from plants. Biochemical analysis revealed that members of the glycoside hydrolase families 17 (GH17) and 152 (GH152) acquired from plants are functional beta-glucanases with different substrate specificities, suggesting distinct roles. These two CAZymes are the first characterized GH17 and GH152 glucanases in an animal. We identified a lower number of HGT events in the related Aleyrodinae Trialeurodes vaporariorum, with only three HGT-acquired CAZymes, including a GH152 glucanase, with phylogenetic analysis suggesting a unique HGT event in the ancestor of the Aleyrodinae. Another GH152 CAZyme, most likely independently acquired from plants, was also identified in two plant cell-feeding insects of the Thysanoptera order, highlighting the importance of plant-acquired CAZymes in the biology of piercing-sucking insects.
{"title":"Functional carbohydrate-active enzymes acquired by horizontal gene transfer from plants in the whitefly Bemisia tabaci.","authors":"Dominique Colinet, Mireille Haon, Elodie Drula, Mathilde Boyer, Sacha Grisel, Carole Belliardo, Georgios D Koutsovoulos, Jean-Guy Berrin, Etienne Gj Danchin","doi":"10.1093/gbe/evaf012","DOIUrl":"https://doi.org/10.1093/gbe/evaf012","url":null,"abstract":"<p><p>Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking. We performed a comprehensive and accurate detection of HGT candidates in B. tabaci and identified 136 HGT events, 14 of which corresponding to CAZymes. The B. tabaci HGT-acquired CAZymes were not only of bacterial or fungal origin, but some were also acquired from plants. Biochemical analysis revealed that members of the glycoside hydrolase families 17 (GH17) and 152 (GH152) acquired from plants are functional beta-glucanases with different substrate specificities, suggesting distinct roles. These two CAZymes are the first characterized GH17 and GH152 glucanases in an animal. We identified a lower number of HGT events in the related Aleyrodinae Trialeurodes vaporariorum, with only three HGT-acquired CAZymes, including a GH152 glucanase, with phylogenetic analysis suggesting a unique HGT event in the ancestor of the Aleyrodinae. Another GH152 CAZyme, most likely independently acquired from plants, was also identified in two plant cell-feeding insects of the Thysanoptera order, highlighting the importance of plant-acquired CAZymes in the biology of piercing-sucking insects.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143038192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kayla Wilhoit, Shun Yamanouchi, Bo-Jyun Chen, Yo Y Yamasaki, Asano Ishikawa, Jun Inoue, Wataru Iwasaki, Jun Kitano
Convergent evolution, the evolution of the same or similar phenotypes in phylogenetically independent lineages, is a widespread phenomenon in nature. If the genetic basis for convergent evolution is predictable to some extent, it may be possible to infer organismic phenotypes and the capability of organisms to utilize new ecological resources based on genome sequence data. While repeated amino acid changes have been studied in association with convergent evolution, relatively little is known about the potential contribution of repeated gene copy number changes. In this study, we explore whether gene copy number changes of particular gene families are linked to diet shifts in mammals and assess if trophic ecology can be inferred from the copy numbers of a specific set of gene families. Using 86 mammalian genome sequences, we identified 24 gene families with a trend toward higher copy numbers in herbivores, carnivores, and omnivores, even after phylogenetic corrections. We were able to confirm previous findings on genes such as amylase, olfactory receptors, and xenobiotic metabolism genes, and identify novel gene families whose copy numbers correlate with dietary patterns. For example, omnivores exhibited higher copy numbers of genes encoding regulators of translation. We also established a discriminant function based on the copy numbers of 13 gene families that can help predict trophic ecology to some extent. These findings highlight a possible association between convergent evolution and repeated copy number changes in specific gene families, suggesting the potential to develop a method for predicting animal ecology from genome sequence data.
{"title":"Convergent evolution and predictability of gene copy numbers associated with diets in mammals.","authors":"Kayla Wilhoit, Shun Yamanouchi, Bo-Jyun Chen, Yo Y Yamasaki, Asano Ishikawa, Jun Inoue, Wataru Iwasaki, Jun Kitano","doi":"10.1093/gbe/evaf008","DOIUrl":"https://doi.org/10.1093/gbe/evaf008","url":null,"abstract":"<p><p>Convergent evolution, the evolution of the same or similar phenotypes in phylogenetically independent lineages, is a widespread phenomenon in nature. If the genetic basis for convergent evolution is predictable to some extent, it may be possible to infer organismic phenotypes and the capability of organisms to utilize new ecological resources based on genome sequence data. While repeated amino acid changes have been studied in association with convergent evolution, relatively little is known about the potential contribution of repeated gene copy number changes. In this study, we explore whether gene copy number changes of particular gene families are linked to diet shifts in mammals and assess if trophic ecology can be inferred from the copy numbers of a specific set of gene families. Using 86 mammalian genome sequences, we identified 24 gene families with a trend toward higher copy numbers in herbivores, carnivores, and omnivores, even after phylogenetic corrections. We were able to confirm previous findings on genes such as amylase, olfactory receptors, and xenobiotic metabolism genes, and identify novel gene families whose copy numbers correlate with dietary patterns. For example, omnivores exhibited higher copy numbers of genes encoding regulators of translation. We also established a discriminant function based on the copy numbers of 13 gene families that can help predict trophic ecology to some extent. These findings highlight a possible association between convergent evolution and repeated copy number changes in specific gene families, suggesting the potential to develop a method for predicting animal ecology from genome sequence data.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Homology is a key concept underpinning the comparison of sequences across organisms. Sequence-level homology is based on a statistical framework optimized over decades of work. Recently, computational protein structure prediction has enabled large-scale homology inference beyond the limits of accurate sequence alignment. In this regime it is possible to observe nearly identical protein structures lacking detectable sequence similarity. In the absence of a robust statistical framework for structure comparison, it is largely assumed similar structures are homologous. However, it is conceivable that matching structures could arise through convergent evolution, resulting in analogous proteins without shared ancestry. Large databases of predicted structures offer a means of determining whether analogs are present among structure matches. Here, I find that a small subset (∼2.6%) of Foldseek clusters lack sequence-level support for homology, including ∼1% of strong structure matches with TM-score ≥ 0.5. This result by itself does not imply these structure pairs are non-homologous, since their sequences could have diverged beyond the limits of recognition. Yet, strong matches without sequence-level support for homology are enriched in structures with predicted repeats that could induce spurious matches. Some of these structural repeats are underpinned by sequence-level tandem repeats in both matching structures. I show that many of these tandem repeat units have genealogies inconsistent with their corresponding structures sharing a common ancestor, implying these highly similar structure pairs are analogous rather than homologous. This result suggests caution is warranted when inferring homology from structural resemblance alone in the absence of sequence-level support for homology.
{"title":"Tandem repeats provide evidence for convergent evolution to similar protein structures.","authors":"Erik S Wright","doi":"10.1093/gbe/evaf013","DOIUrl":"https://doi.org/10.1093/gbe/evaf013","url":null,"abstract":"<p><p>Homology is a key concept underpinning the comparison of sequences across organisms. Sequence-level homology is based on a statistical framework optimized over decades of work. Recently, computational protein structure prediction has enabled large-scale homology inference beyond the limits of accurate sequence alignment. In this regime it is possible to observe nearly identical protein structures lacking detectable sequence similarity. In the absence of a robust statistical framework for structure comparison, it is largely assumed similar structures are homologous. However, it is conceivable that matching structures could arise through convergent evolution, resulting in analogous proteins without shared ancestry. Large databases of predicted structures offer a means of determining whether analogs are present among structure matches. Here, I find that a small subset (∼2.6%) of Foldseek clusters lack sequence-level support for homology, including ∼1% of strong structure matches with TM-score ≥ 0.5. This result by itself does not imply these structure pairs are non-homologous, since their sequences could have diverged beyond the limits of recognition. Yet, strong matches without sequence-level support for homology are enriched in structures with predicted repeats that could induce spurious matches. Some of these structural repeats are underpinned by sequence-level tandem repeats in both matching structures. I show that many of these tandem repeat units have genealogies inconsistent with their corresponding structures sharing a common ancestor, implying these highly similar structure pairs are analogous rather than homologous. This result suggests caution is warranted when inferring homology from structural resemblance alone in the absence of sequence-level support for homology.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brooke Weinstein, Zongji Wang, Qi Zhou, Scott William Roy
Eukaryotic genome size varies considerably, even among closely related species. The causes of this variation are unclear, but weak selection against supposedly costly "extra" genomic sequences has been central to the debate for over 50 years. The mutational hazard hypothesis, which focuses on the increased mutation rate to null alleles in superfluous sequences, is particularly influential, though challenging to test. This study examines the sex chromosomes and mitochondrial genomes of 15 flightless or semi-flighted paleognathous bird species. In this clade, the non-recombining portion of the W chromosome has independently expanded stepwise in multiple lineages. Given the shared maternal inheritance of the W chromosome and mitochondria, theory predicts that mitochondrial effective population size (Ne) should decrease due to increased Hill-Robertson Interference in lineages with expanded non-recombining W regions. Our findings support the extent of the non-recombining W region with three indicators of reduced selective efficiency: (1) the ratio of non-synonymous to synonymous nucleotide changes in the mitochondrion, (2) the probability of radical amino acid changes, and (3) the number of ancient, W-linked genes lost through evolution. Next, we tested whether reduced Ne affects mitochondrial genome size, as predicted by weak selection against genome expansion. We find no support for a relationship between mitochondrial genome size and expanded non-recombining W regions, nor with increased mitochondrial mutation rates (predicted to modulate selective costs). These results highlight the utility of non-recombining regions and mitochondrial genomes for studying genome evolution and challenge the general idea of a negative relation between the efficacy of selection and genome size.
{"title":"ZW sex chromosome differentiation in paleognathous birds is associated with mitochondrial effective population size but not mitochondrial genome size or mutation rate.","authors":"Brooke Weinstein, Zongji Wang, Qi Zhou, Scott William Roy","doi":"10.1093/gbe/evaf005","DOIUrl":"https://doi.org/10.1093/gbe/evaf005","url":null,"abstract":"<p><p>Eukaryotic genome size varies considerably, even among closely related species. The causes of this variation are unclear, but weak selection against supposedly costly \"extra\" genomic sequences has been central to the debate for over 50 years. The mutational hazard hypothesis, which focuses on the increased mutation rate to null alleles in superfluous sequences, is particularly influential, though challenging to test. This study examines the sex chromosomes and mitochondrial genomes of 15 flightless or semi-flighted paleognathous bird species. In this clade, the non-recombining portion of the W chromosome has independently expanded stepwise in multiple lineages. Given the shared maternal inheritance of the W chromosome and mitochondria, theory predicts that mitochondrial effective population size (Ne) should decrease due to increased Hill-Robertson Interference in lineages with expanded non-recombining W regions. Our findings support the extent of the non-recombining W region with three indicators of reduced selective efficiency: (1) the ratio of non-synonymous to synonymous nucleotide changes in the mitochondrion, (2) the probability of radical amino acid changes, and (3) the number of ancient, W-linked genes lost through evolution. Next, we tested whether reduced Ne affects mitochondrial genome size, as predicted by weak selection against genome expansion. We find no support for a relationship between mitochondrial genome size and expanded non-recombining W regions, nor with increased mitochondrial mutation rates (predicted to modulate selective costs). These results highlight the utility of non-recombining regions and mitochondrial genomes for studying genome evolution and challenge the general idea of a negative relation between the efficacy of selection and genome size.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina Diaz Arenas, Maristella Alvarez, Robert H Wilson, Eugene I Shakhnovich, C Brandon Ogbunugafor
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and a protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
{"title":"Protein quality control is a master modulator of molecular evolution in bacteria.","authors":"Carolina Diaz Arenas, Maristella Alvarez, Robert H Wilson, Eugene I Shakhnovich, C Brandon Ogbunugafor","doi":"10.1093/gbe/evaf010","DOIUrl":"https://doi.org/10.1093/gbe/evaf010","url":null,"abstract":"<p><p>The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and a protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ricardo Fong-Zazueta, Johanna Krueger, David M Alba, Xènia Aymerich, Robin M D Beck, Enrico Cappellini, Guillermo Carrillo-Martin, Omar Cirilli, Nathan Clark, Omar E Cornejo, Kyle Kai-How Farh, Luis Ferrández-Peral, David Juan, Joanna L Kelley, Lukas F K Kuderna, Jordan Little, Joseph D Orkin, Ryan S Paterson, Harvinder Pawar, Tomas Marques-Bonet, Esther Lizano
Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem. This raises the question as to whether the enamelome alone provides enough information for reliable phylogenetic inference. We address these considerations on a selection of enamel-associated proteins that has been computationally predicted from genomic data from 232 primate species. We created multiple sequence alignments for each protein and estimated the evolutionary rate for each site. We examined which sites overlap with the parts of the protein sequences that are typically isolated from fossils. Based on this, we simulated ancient data with different degrees of sequence fragmentation, followed by phylogenetic analysis. We compared these trees to a reference species tree. Up to a degree of fragmentation that is similar to that of fossil samples from 1-2 million years ago, the phylogenetic placements of most nodes at family level are consistent with the reference species tree. We tested phylogenetic analysis on combinations of different enamel proteins and found that the composition of the proteome can influence deep splits in the phylogeny. With our methods, we provide guidance for researchers on how to evaluate the potential of paleoproteomics for phylogenetic studies before sampling valuable ancient specimens.
{"title":"Phylogenetic signal in primate tooth enamel proteins and its relevance for paleoproteomics.","authors":"Ricardo Fong-Zazueta, Johanna Krueger, David M Alba, Xènia Aymerich, Robin M D Beck, Enrico Cappellini, Guillermo Carrillo-Martin, Omar Cirilli, Nathan Clark, Omar E Cornejo, Kyle Kai-How Farh, Luis Ferrández-Peral, David Juan, Joanna L Kelley, Lukas F K Kuderna, Jordan Little, Joseph D Orkin, Ryan S Paterson, Harvinder Pawar, Tomas Marques-Bonet, Esther Lizano","doi":"10.1093/gbe/evaf007","DOIUrl":"https://doi.org/10.1093/gbe/evaf007","url":null,"abstract":"<p><p>Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem. This raises the question as to whether the enamelome alone provides enough information for reliable phylogenetic inference. We address these considerations on a selection of enamel-associated proteins that has been computationally predicted from genomic data from 232 primate species. We created multiple sequence alignments for each protein and estimated the evolutionary rate for each site. We examined which sites overlap with the parts of the protein sequences that are typically isolated from fossils. Based on this, we simulated ancient data with different degrees of sequence fragmentation, followed by phylogenetic analysis. We compared these trees to a reference species tree. Up to a degree of fragmentation that is similar to that of fossil samples from 1-2 million years ago, the phylogenetic placements of most nodes at family level are consistent with the reference species tree. We tested phylogenetic analysis on combinations of different enamel proteins and found that the composition of the proteome can influence deep splits in the phylogeny. With our methods, we provide guidance for researchers on how to evaluate the potential of paleoproteomics for phylogenetic studies before sampling valuable ancient specimens.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vasiliki Koutsouveli, Montserrat Torres-Oliva, Till Bayer, Janina Fuß, Nora Grossschmidt, Angela M Marulanda-Gomez, Nadin Jensen, Diana Gill, Ruth A Schmitz, Lucía Pita, Thorsten B H Reusch
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M. leidyi with a focus on its immune gene repertoire. The genome was 247.97 Mb, with N50 16.84 Mb, and 84.7% completeness. Its karyotype was 13 chromosomes. In this genome and that of two other ctenophores, Bolinopsis microptera and Hormiphora californensis, we detected a high number of protein domains related to potential immune receptors. Among those, proteins containing Toll/interleukin-1(TIR2) domain, NACHT domain, Scavenger Receptor Cystein-Rich (SRCR) domain, or C-type Lectin domain (CTLD) were abundant and presented unique domain architectures in M. leidyi. M. leidyi seems to lack bona fide Toll like Receptors, but it does possess a repertoire of 15 TIR2-domain containing genes. Besides, we detected a bona fide NOD-like receptor and 38 NACHT-domain containing genes. In order to verify the function of those domain containing genes, we exposed M. leidyi to the pathogen Vibrio coralliilyticus. Among the differentially expressed genes, we identified potential immune receptors, including four TIR2-domain containing genes, all of which were upregulated in response to pathogen exposure. To conclude, many common immune receptor domains, highly conserved across metazoans, are already present in Ctenophora. These domains have large expansions and unique architectures in M. leidyi, findings consistent with the basal evolutionary position of this group, but still might have conserved functions in immunity and host-microbe interaction.
{"title":"The chromosome-level genome of the ctenophore Mnemiopsis leidyi A. Agassiz, 1865 reveals a unique immune gene repertoire.","authors":"Vasiliki Koutsouveli, Montserrat Torres-Oliva, Till Bayer, Janina Fuß, Nora Grossschmidt, Angela M Marulanda-Gomez, Nadin Jensen, Diana Gill, Ruth A Schmitz, Lucía Pita, Thorsten B H Reusch","doi":"10.1093/gbe/evaf006","DOIUrl":"https://doi.org/10.1093/gbe/evaf006","url":null,"abstract":"<p><p>Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M. leidyi with a focus on its immune gene repertoire. The genome was 247.97 Mb, with N50 16.84 Mb, and 84.7% completeness. Its karyotype was 13 chromosomes. In this genome and that of two other ctenophores, Bolinopsis microptera and Hormiphora californensis, we detected a high number of protein domains related to potential immune receptors. Among those, proteins containing Toll/interleukin-1(TIR2) domain, NACHT domain, Scavenger Receptor Cystein-Rich (SRCR) domain, or C-type Lectin domain (CTLD) were abundant and presented unique domain architectures in M. leidyi. M. leidyi seems to lack bona fide Toll like Receptors, but it does possess a repertoire of 15 TIR2-domain containing genes. Besides, we detected a bona fide NOD-like receptor and 38 NACHT-domain containing genes. In order to verify the function of those domain containing genes, we exposed M. leidyi to the pathogen Vibrio coralliilyticus. Among the differentially expressed genes, we identified potential immune receptors, including four TIR2-domain containing genes, all of which were upregulated in response to pathogen exposure. To conclude, many common immune receptor domains, highly conserved across metazoans, are already present in Ctenophora. These domains have large expansions and unique architectures in M. leidyi, findings consistent with the basal evolutionary position of this group, but still might have conserved functions in immunity and host-microbe interaction.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}